搅拌摩擦法修复AA6061-T6铝合金表面裂纹

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fadi Al-Badour , Ahmad H. Bawagnih , Ahmed Ali , Rami K. Suleiman , Necar Merah
{"title":"搅拌摩擦法修复AA6061-T6铝合金表面裂纹","authors":"Fadi Al-Badour ,&nbsp;Ahmad H. Bawagnih ,&nbsp;Ahmed Ali ,&nbsp;Rami K. Suleiman ,&nbsp;Necar Merah","doi":"10.1016/j.jajp.2025.100340","DOIUrl":null,"url":null,"abstract":"<div><div>Friction Stir Welding (FSW) is an advanced solid-state joining technique that offers an effective solution for repairing surface cracks in aluminum alloys. This study investigates the repair of an artificially induced 2 mm square groove in AA6061-T6 aluminum alloy plate; resemble pre-repair preparation, using friction stir processing (FSP), incorporating an aluminum filler rod and silicon carbide (SiC) nanoparticles as a reinforcement to ensure complete crack sealing. FSP was conducted on both cracked and crack-free samples, with a focus on the impact of tool offset during the repair process. Tool offsets of 0 mm, 1.75 mm, and 3.5 mm were employed toward the advancing side to assess their influence on the repair process. Mechanical testing, microstructural characterization, temperature, and force analysis were performed to comprehensively evaluate the repair strategy. The repaired samples exhibited an average ultimate tensile strength (UTS) of approximately 180 MPa, closely matching the 186 MPa observed in crack-free bead-on-plate welds. Additionally, the microhardness at stir zone (SZ) improved to average values of 77 HV for 0 mm offset and 80 HV for 1.75 mm offset, compared to 70 HV in the bead-on-plate welds . Despite the presence of microstructural defects, the use of tool offset contributed to satisfactory mechanical performance. However, samples welded with 0 mm tool offset exhibited slightly superior mechanical properties. Overall, this research highlights the feasibility of using FSP, combined with SiC nanoparticles reinforced filler material and tool offset control, as a promising approach for effective surface crack repair in aluminum alloys, providing a foundation for further process optimization and industrial application.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100340"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface cracks repair in AA6061-T6 aluminum alloys using friction stir processing\",\"authors\":\"Fadi Al-Badour ,&nbsp;Ahmad H. Bawagnih ,&nbsp;Ahmed Ali ,&nbsp;Rami K. Suleiman ,&nbsp;Necar Merah\",\"doi\":\"10.1016/j.jajp.2025.100340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Friction Stir Welding (FSW) is an advanced solid-state joining technique that offers an effective solution for repairing surface cracks in aluminum alloys. This study investigates the repair of an artificially induced 2 mm square groove in AA6061-T6 aluminum alloy plate; resemble pre-repair preparation, using friction stir processing (FSP), incorporating an aluminum filler rod and silicon carbide (SiC) nanoparticles as a reinforcement to ensure complete crack sealing. FSP was conducted on both cracked and crack-free samples, with a focus on the impact of tool offset during the repair process. Tool offsets of 0 mm, 1.75 mm, and 3.5 mm were employed toward the advancing side to assess their influence on the repair process. Mechanical testing, microstructural characterization, temperature, and force analysis were performed to comprehensively evaluate the repair strategy. The repaired samples exhibited an average ultimate tensile strength (UTS) of approximately 180 MPa, closely matching the 186 MPa observed in crack-free bead-on-plate welds. Additionally, the microhardness at stir zone (SZ) improved to average values of 77 HV for 0 mm offset and 80 HV for 1.75 mm offset, compared to 70 HV in the bead-on-plate welds . Despite the presence of microstructural defects, the use of tool offset contributed to satisfactory mechanical performance. However, samples welded with 0 mm tool offset exhibited slightly superior mechanical properties. Overall, this research highlights the feasibility of using FSP, combined with SiC nanoparticles reinforced filler material and tool offset control, as a promising approach for effective surface crack repair in aluminum alloys, providing a foundation for further process optimization and industrial application.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"12 \",\"pages\":\"Article 100340\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

搅拌摩擦焊(FSW)是一种先进的固态连接技术,为修复铝合金表面裂纹提供了有效的解决方案。研究了AA6061-T6铝合金板人工诱导2 mm方槽的修复问题;类似于预修复准备,使用摩擦搅拌处理(FSP),结合铝填充棒和碳化硅纳米颗粒作为增强剂,以确保完全密封裂缝。FSP对裂纹和无裂纹样品进行了研究,重点研究了修复过程中刀具偏移的影响。刀具偏移量分别为0 mm、1.75 mm和3.5 mm,以评估其对修复过程的影响。力学测试、显微组织表征、温度和力分析进行了综合评估修复策略。修复样品的平均极限抗拉强度(UTS)约为180 MPa,与无裂纹板上焊的186 MPa非常接近。此外,搅拌区(SZ)的显微硬度在偏移量为0 mm时提高到77 HV,偏移量为1.75 mm时提高到80 HV,而焊珠对板焊接的显微硬度为70 HV。尽管存在显微组织缺陷,但刀具偏移的使用有助于获得令人满意的机械性能。然而,用0 mm刀具偏移焊接的样品表现出稍好的机械性能。综上所述,本研究突出了FSP与SiC纳米颗粒增强填充材料和刀具偏移控制相结合的可行性,为进一步的工艺优化和工业应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface cracks repair in AA6061-T6 aluminum alloys using friction stir processing
Friction Stir Welding (FSW) is an advanced solid-state joining technique that offers an effective solution for repairing surface cracks in aluminum alloys. This study investigates the repair of an artificially induced 2 mm square groove in AA6061-T6 aluminum alloy plate; resemble pre-repair preparation, using friction stir processing (FSP), incorporating an aluminum filler rod and silicon carbide (SiC) nanoparticles as a reinforcement to ensure complete crack sealing. FSP was conducted on both cracked and crack-free samples, with a focus on the impact of tool offset during the repair process. Tool offsets of 0 mm, 1.75 mm, and 3.5 mm were employed toward the advancing side to assess their influence on the repair process. Mechanical testing, microstructural characterization, temperature, and force analysis were performed to comprehensively evaluate the repair strategy. The repaired samples exhibited an average ultimate tensile strength (UTS) of approximately 180 MPa, closely matching the 186 MPa observed in crack-free bead-on-plate welds. Additionally, the microhardness at stir zone (SZ) improved to average values of 77 HV for 0 mm offset and 80 HV for 1.75 mm offset, compared to 70 HV in the bead-on-plate welds . Despite the presence of microstructural defects, the use of tool offset contributed to satisfactory mechanical performance. However, samples welded with 0 mm tool offset exhibited slightly superior mechanical properties. Overall, this research highlights the feasibility of using FSP, combined with SiC nanoparticles reinforced filler material and tool offset control, as a promising approach for effective surface crack repair in aluminum alloys, providing a foundation for further process optimization and industrial application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信