空间导航海马-基底神经节相互作用的动力学建模

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Haobin Wei , Lining Yin , Songan Hou , Ying Yu , Qingyun Wang
{"title":"空间导航海马-基底神经节相互作用的动力学建模","authors":"Haobin Wei ,&nbsp;Lining Yin ,&nbsp;Songan Hou ,&nbsp;Ying Yu ,&nbsp;Qingyun Wang","doi":"10.1016/j.chaos.2025.117014","DOIUrl":null,"url":null,"abstract":"<div><div>Coordinated interactions between the hippocampus and basal ganglia are known to support navigational decision-making, yet their precise collaborative mechanisms remain elusive. Based on biological theories, this study establishes a hippocampal-basal ganglia circuit model for navigation. Unlike existing neural reinforcement learning models, the proposed model aims to investigate how the interaction between the hippocampus and basal ganglia influences navigation. The model incorporates spike-timing-dependent plasticity (STDP) and dopamine-mediated reinforcement learning, enabling the hippocampal module to learn environments and retain goal memories in an allocentric (world-centered) coordinate system. Additionally, it integrates a cortico-basal ganglia network to address choice conflicts. This network receives egocentric (self-centered) landmark inputs and establishes stimulus-action associations through synaptic plasticity. By combining the hippocampus’s spatial representation and the basal ganglia’s action selection strategy, the model simulates the decision-making process from spatial learning to motor execution. Furthermore, the model successfully reproduces rodent navigation behaviors in Morris water maze and plus maze paradigms, demonstrating lesion-induced deficits matching biological observations. Finally, validation through mobile robot navigation task confirms physical realizability. The model demonstrates biological plausibility, mechanistically explaining how action sequences are generated during biological navigation. It provides a novel computational perspective for understanding the neural basis of navigational behavior.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 117014"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical modeling of hippocampal-basal ganglia interactions for spatial navigation\",\"authors\":\"Haobin Wei ,&nbsp;Lining Yin ,&nbsp;Songan Hou ,&nbsp;Ying Yu ,&nbsp;Qingyun Wang\",\"doi\":\"10.1016/j.chaos.2025.117014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coordinated interactions between the hippocampus and basal ganglia are known to support navigational decision-making, yet their precise collaborative mechanisms remain elusive. Based on biological theories, this study establishes a hippocampal-basal ganglia circuit model for navigation. Unlike existing neural reinforcement learning models, the proposed model aims to investigate how the interaction between the hippocampus and basal ganglia influences navigation. The model incorporates spike-timing-dependent plasticity (STDP) and dopamine-mediated reinforcement learning, enabling the hippocampal module to learn environments and retain goal memories in an allocentric (world-centered) coordinate system. Additionally, it integrates a cortico-basal ganglia network to address choice conflicts. This network receives egocentric (self-centered) landmark inputs and establishes stimulus-action associations through synaptic plasticity. By combining the hippocampus’s spatial representation and the basal ganglia’s action selection strategy, the model simulates the decision-making process from spatial learning to motor execution. Furthermore, the model successfully reproduces rodent navigation behaviors in Morris water maze and plus maze paradigms, demonstrating lesion-induced deficits matching biological observations. Finally, validation through mobile robot navigation task confirms physical realizability. The model demonstrates biological plausibility, mechanistically explaining how action sequences are generated during biological navigation. It provides a novel computational perspective for understanding the neural basis of navigational behavior.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 117014\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925010276\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925010276","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,海马体和基底神经节之间的协调相互作用支持导航决策,但它们的精确协作机制仍然难以捉摸。本研究以生物学理论为基础,建立海马-基底节区导航回路模型。与现有的神经强化学习模型不同,该模型旨在研究海马和基底神经节之间的相互作用如何影响导航。该模型结合了spike- time -dependent plasticity (STDP)和多巴胺介导的强化学习,使海马体模块能够在非中心(以世界为中心)的坐标系中学习环境和保留目标记忆。此外,它整合了皮质-基底神经节网络来解决选择冲突。该网络接受以自我为中心的里程碑输入,并通过突触可塑性建立刺激-行动联系。该模型结合海马的空间表征和基底神经节的动作选择策略,模拟了从空间学习到运动执行的决策过程。此外,该模型成功再现了Morris水迷宫和加迷宫范式中啮齿动物的导航行为,证明了损伤引起的缺陷与生物学观察相匹配。最后通过移动机器人导航任务验证物理可实现性。该模型展示了生物学上的合理性,从机制上解释了生物导航过程中动作序列是如何产生的。它为理解导航行为的神经基础提供了一个新的计算视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical modeling of hippocampal-basal ganglia interactions for spatial navigation
Coordinated interactions between the hippocampus and basal ganglia are known to support navigational decision-making, yet their precise collaborative mechanisms remain elusive. Based on biological theories, this study establishes a hippocampal-basal ganglia circuit model for navigation. Unlike existing neural reinforcement learning models, the proposed model aims to investigate how the interaction between the hippocampus and basal ganglia influences navigation. The model incorporates spike-timing-dependent plasticity (STDP) and dopamine-mediated reinforcement learning, enabling the hippocampal module to learn environments and retain goal memories in an allocentric (world-centered) coordinate system. Additionally, it integrates a cortico-basal ganglia network to address choice conflicts. This network receives egocentric (self-centered) landmark inputs and establishes stimulus-action associations through synaptic plasticity. By combining the hippocampus’s spatial representation and the basal ganglia’s action selection strategy, the model simulates the decision-making process from spatial learning to motor execution. Furthermore, the model successfully reproduces rodent navigation behaviors in Morris water maze and plus maze paradigms, demonstrating lesion-induced deficits matching biological observations. Finally, validation through mobile robot navigation task confirms physical realizability. The model demonstrates biological plausibility, mechanistically explaining how action sequences are generated during biological navigation. It provides a novel computational perspective for understanding the neural basis of navigational behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信