Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang
{"title":"Au/Ti-CeO2光催化选择性甲烷氧化制乙烷的转向电荷动力学和表面反应性","authors":"Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang","doi":"10.1016/j.actphy.2025.100153","DOIUrl":null,"url":null,"abstract":"<div><div>The selective oxidation of methane to value-added chemicals under mild conditions presents a sustainable yet challenging route, hindered by sluggish CH<sub>4</sub> activation and overoxidation. Herein, we report a delicate strategy combining Ti doping and Au loading to construct a high-performance Au/Ti-CeO<sub>2</sub> photocatalyst for ethane production from oxidative methane coupling. The optimized catalyst achieves a C<sub>2</sub>H<sub>6</sub> production rate of 2971.4 μmol g<sup>−1</sup> h<sup>−1</sup> with 85.1 % C<sub>2+</sub> selectivity, stably operating over 20 reaction cycles. <em>In situ</em> X-ray photoelectron spectroscopy, electron paramagnetic resonance, and diffuse reflectance infrared Fourier transform spectroscopy analyses reveal that Ti doping introduces impurity energy levels into CeO<sub>2</sub>, promoting directional electron migration to surface Au nanoparticles (NPs) <em>via</em> a built-in electric field. The Au NPs act as electron accumulation sites to activate O<sub>2</sub>, facilitate ∗CH<sub>3</sub> radical coupling into C<sub>2</sub>H<sub>6</sub>, and stabilize reactive intermediates, thus enhancing charge separation and suppressing intermediate overoxidation. This study highlights the significance of synergistic modulation <em>via</em> elemental doping and cocatalyst engineering in tuning charge dynamics and surface reactivity for efficient photocatalytic methane conversion.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 11","pages":"Article 100153"},"PeriodicalIF":13.5000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2\",\"authors\":\"Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang\",\"doi\":\"10.1016/j.actphy.2025.100153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The selective oxidation of methane to value-added chemicals under mild conditions presents a sustainable yet challenging route, hindered by sluggish CH<sub>4</sub> activation and overoxidation. Herein, we report a delicate strategy combining Ti doping and Au loading to construct a high-performance Au/Ti-CeO<sub>2</sub> photocatalyst for ethane production from oxidative methane coupling. The optimized catalyst achieves a C<sub>2</sub>H<sub>6</sub> production rate of 2971.4 μmol g<sup>−1</sup> h<sup>−1</sup> with 85.1 % C<sub>2+</sub> selectivity, stably operating over 20 reaction cycles. <em>In situ</em> X-ray photoelectron spectroscopy, electron paramagnetic resonance, and diffuse reflectance infrared Fourier transform spectroscopy analyses reveal that Ti doping introduces impurity energy levels into CeO<sub>2</sub>, promoting directional electron migration to surface Au nanoparticles (NPs) <em>via</em> a built-in electric field. The Au NPs act as electron accumulation sites to activate O<sub>2</sub>, facilitate ∗CH<sub>3</sub> radical coupling into C<sub>2</sub>H<sub>6</sub>, and stabilize reactive intermediates, thus enhancing charge separation and suppressing intermediate overoxidation. This study highlights the significance of synergistic modulation <em>via</em> elemental doping and cocatalyst engineering in tuning charge dynamics and surface reactivity for efficient photocatalytic methane conversion.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 11\",\"pages\":\"Article 100153\"},\"PeriodicalIF\":13.5000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681825001092\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825001092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2
The selective oxidation of methane to value-added chemicals under mild conditions presents a sustainable yet challenging route, hindered by sluggish CH4 activation and overoxidation. Herein, we report a delicate strategy combining Ti doping and Au loading to construct a high-performance Au/Ti-CeO2 photocatalyst for ethane production from oxidative methane coupling. The optimized catalyst achieves a C2H6 production rate of 2971.4 μmol g−1 h−1 with 85.1 % C2+ selectivity, stably operating over 20 reaction cycles. In situ X-ray photoelectron spectroscopy, electron paramagnetic resonance, and diffuse reflectance infrared Fourier transform spectroscopy analyses reveal that Ti doping introduces impurity energy levels into CeO2, promoting directional electron migration to surface Au nanoparticles (NPs) via a built-in electric field. The Au NPs act as electron accumulation sites to activate O2, facilitate ∗CH3 radical coupling into C2H6, and stabilize reactive intermediates, thus enhancing charge separation and suppressing intermediate overoxidation. This study highlights the significance of synergistic modulation via elemental doping and cocatalyst engineering in tuning charge dynamics and surface reactivity for efficient photocatalytic methane conversion.