{"title":"Ce3Pd20Si6重费米子体系横向磁电阻的逆等吸点","authors":"M.A. Anisimov , A.V. Bogach , S.V. Demishev , A.N. Samarin , A.V. Semeno , S.V. Gribanova , S.F. Dunaev , A.V. Gribanov","doi":"10.1016/j.ssc.2025.116075","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy fermion compound Ce<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Pd<sub>20</sub>Si<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> (CPS) is known mainly due to the study of quantum criticality in a local-moment system, since antiferromagnetic (AFM) phase transition is fully suppressed by magnetic field. Here we report galvanomagnetic properties [electrical resistivity, transverse magnetoresistance (TMR)] of Ce<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Pd<sub>20</sub>Si<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> and its non-magnetic counterpart La<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Pd<sub>20</sub>Si<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> (LPS). The experiment has been performed on polycrystals of high quality in the temperature range 1.8 <span><math><mo>−</mo></math></span> 300 K in magnetic fields up to 82 kOe. The obtained data allow us for the first time to register the isosbestic point (IP) at <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> <span><math><mo>≈</mo></math></span> 8 K, which is very close to the position of inversion point <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></math></span> <span><math><mo>≈</mo></math></span> 7.4 K, separating positive (<span><math><mrow><mi>T</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></mrow></math></span>) and negative (<span><math><mrow><mi>T</mi><mo><</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></mrow></math></span>) regimes of TMR in CPS. The phenomenon when two characteristic temperatures of different nature practically coincide is very unusual, and they may be considered as one temperature scale (inverse isosbestic point). In our opinion <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span>/<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></math></span> plays significant role, being the boundary of the formation of spin and orbital correlations in paramagnetic (PM) vicinity of so-called phase II in CPS.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"404 ","pages":"Article 116075"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse isosbestic point in transverse magnetoresistance of Ce3Pd20Si6 heavy fermion system\",\"authors\":\"M.A. Anisimov , A.V. Bogach , S.V. Demishev , A.N. Samarin , A.V. Semeno , S.V. Gribanova , S.F. Dunaev , A.V. Gribanov\",\"doi\":\"10.1016/j.ssc.2025.116075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heavy fermion compound Ce<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Pd<sub>20</sub>Si<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> (CPS) is known mainly due to the study of quantum criticality in a local-moment system, since antiferromagnetic (AFM) phase transition is fully suppressed by magnetic field. Here we report galvanomagnetic properties [electrical resistivity, transverse magnetoresistance (TMR)] of Ce<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Pd<sub>20</sub>Si<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> and its non-magnetic counterpart La<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Pd<sub>20</sub>Si<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> (LPS). The experiment has been performed on polycrystals of high quality in the temperature range 1.8 <span><math><mo>−</mo></math></span> 300 K in magnetic fields up to 82 kOe. The obtained data allow us for the first time to register the isosbestic point (IP) at <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> <span><math><mo>≈</mo></math></span> 8 K, which is very close to the position of inversion point <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></math></span> <span><math><mo>≈</mo></math></span> 7.4 K, separating positive (<span><math><mrow><mi>T</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></mrow></math></span>) and negative (<span><math><mrow><mi>T</mi><mo><</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></mrow></math></span>) regimes of TMR in CPS. The phenomenon when two characteristic temperatures of different nature practically coincide is very unusual, and they may be considered as one temperature scale (inverse isosbestic point). In our opinion <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span>/<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>n</mi><mi>v</mi></mrow></msub></math></span> plays significant role, being the boundary of the formation of spin and orbital correlations in paramagnetic (PM) vicinity of so-called phase II in CPS.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"404 \",\"pages\":\"Article 116075\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109825002509\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825002509","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Inverse isosbestic point in transverse magnetoresistance of Ce3Pd20Si6 heavy fermion system
Heavy fermion compound CePd20Si (CPS) is known mainly due to the study of quantum criticality in a local-moment system, since antiferromagnetic (AFM) phase transition is fully suppressed by magnetic field. Here we report galvanomagnetic properties [electrical resistivity, transverse magnetoresistance (TMR)] of CePd20Si and its non-magnetic counterpart LaPd20Si (LPS). The experiment has been performed on polycrystals of high quality in the temperature range 1.8 300 K in magnetic fields up to 82 kOe. The obtained data allow us for the first time to register the isosbestic point (IP) at 8 K, which is very close to the position of inversion point 7.4 K, separating positive () and negative () regimes of TMR in CPS. The phenomenon when two characteristic temperatures of different nature practically coincide is very unusual, and they may be considered as one temperature scale (inverse isosbestic point). In our opinion / plays significant role, being the boundary of the formation of spin and orbital correlations in paramagnetic (PM) vicinity of so-called phase II in CPS.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.