{"title":"利用交流/直流电学表征系统,利用operando激光光电发射电子显微镜观察铁电器件的击穿和极化对比","authors":"Hirokazu Fujiwara , Yuki Itoya , Masaharu Kobayashi , Cédric Bareille , Toshiyuki Taniuchi","doi":"10.1016/j.ultramic.2025.114221","DOIUrl":null,"url":null,"abstract":"<div><div>We have developed an <em>operando</em> laser-based photoemission electron microscope (laser-PEEM) with a ferroelectric characterization system. A Sawyer-Tower circuit was implemented to measure the polarization–voltage (<em>P</em>–<em>V</em>) characteristics of ferroelectric devices. Using this system, we successfully obtained the well-defined <em>P</em>–<em>V</em> hysteresis loops for a ferroelectric capacitor incorporating Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO), reproducing the typical field-cycling characteristics of HZO capacitors. After dielectric breakdown caused by field-cycling stress, we visualized a conduction filament through the top electrode without any destructive processing. Additionally, we successfully observed polarization contrast through the top electrode of an oxide semiconductor (InZnO<em><sub>x</sub></em>). These results indicate that our <em>operando</em> laser-PEEM system is a powerful tool for visualizing conduction filaments after dielectric breakdown, the ferroelectric polarization contrasts, and electronic state distribution of materials implemented in ferroelectric devices, including ferroelectric field-effect transistors and ferroelectric tunnel junctions.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"277 ","pages":"Article 114221"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakdown and polarization contrasts in ferroelectric devices observed by operando laser-based photoemission electron microscopy with the AC/DC electrical characterization system\",\"authors\":\"Hirokazu Fujiwara , Yuki Itoya , Masaharu Kobayashi , Cédric Bareille , Toshiyuki Taniuchi\",\"doi\":\"10.1016/j.ultramic.2025.114221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have developed an <em>operando</em> laser-based photoemission electron microscope (laser-PEEM) with a ferroelectric characterization system. A Sawyer-Tower circuit was implemented to measure the polarization–voltage (<em>P</em>–<em>V</em>) characteristics of ferroelectric devices. Using this system, we successfully obtained the well-defined <em>P</em>–<em>V</em> hysteresis loops for a ferroelectric capacitor incorporating Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO), reproducing the typical field-cycling characteristics of HZO capacitors. After dielectric breakdown caused by field-cycling stress, we visualized a conduction filament through the top electrode without any destructive processing. Additionally, we successfully observed polarization contrast through the top electrode of an oxide semiconductor (InZnO<em><sub>x</sub></em>). These results indicate that our <em>operando</em> laser-PEEM system is a powerful tool for visualizing conduction filaments after dielectric breakdown, the ferroelectric polarization contrasts, and electronic state distribution of materials implemented in ferroelectric devices, including ferroelectric field-effect transistors and ferroelectric tunnel junctions.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"277 \",\"pages\":\"Article 114221\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399125001196\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125001196","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
Breakdown and polarization contrasts in ferroelectric devices observed by operando laser-based photoemission electron microscopy with the AC/DC electrical characterization system
We have developed an operando laser-based photoemission electron microscope (laser-PEEM) with a ferroelectric characterization system. A Sawyer-Tower circuit was implemented to measure the polarization–voltage (P–V) characteristics of ferroelectric devices. Using this system, we successfully obtained the well-defined P–V hysteresis loops for a ferroelectric capacitor incorporating Hf0.5Zr0.5O2 (HZO), reproducing the typical field-cycling characteristics of HZO capacitors. After dielectric breakdown caused by field-cycling stress, we visualized a conduction filament through the top electrode without any destructive processing. Additionally, we successfully observed polarization contrast through the top electrode of an oxide semiconductor (InZnOx). These results indicate that our operando laser-PEEM system is a powerful tool for visualizing conduction filaments after dielectric breakdown, the ferroelectric polarization contrasts, and electronic state distribution of materials implemented in ferroelectric devices, including ferroelectric field-effect transistors and ferroelectric tunnel junctions.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.