Hua Su, Haoran Wang, Lei Zhang, Jin Zhao, Xiangcheng Zheng
{"title":"改进的高指数鞍动态寻找鞍点和解决方案景观","authors":"Hua Su, Haoran Wang, Lei Zhang, Jin Zhao, Xiangcheng Zheng","doi":"10.1137/25m173212x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1757-1775, August 2025. <br/> Abstract. We present an improved high-index saddle dynamics (iHiSD) for finding saddle points and constructing solution landscapes, which is a crossover dynamics from gradient flow to traditional HiSD such that the Morse theory for gradient flow could be involved. We propose analysis for the reflection manifold in iHiSD and then prove its stable and nonlocal convergence from stationary points that may not be close to the target saddle point, which reduces the dependence of the convergence of HiSD on the initial value. We then present and analyze a discretized iHiSD for implementation. Furthermore, based on Morse theory, we prove that any two saddle points could be connected by a sequence of trajectories of iHiSD. Ideally, this implies that a solution landscape with a finite number of stationary points could be completely constructed by means of iHiSD, which partly answers the completeness issue of the solution landscape for the first time and indicates the necessity of integrating the gradient flow in HiSD. Different methods are compared by numerical experiments to substantiate the effectiveness of the iHiSD method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved High-Index Saddle Dynamics for Finding Saddle Points and Solution Landscape\",\"authors\":\"Hua Su, Haoran Wang, Lei Zhang, Jin Zhao, Xiangcheng Zheng\",\"doi\":\"10.1137/25m173212x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1757-1775, August 2025. <br/> Abstract. We present an improved high-index saddle dynamics (iHiSD) for finding saddle points and constructing solution landscapes, which is a crossover dynamics from gradient flow to traditional HiSD such that the Morse theory for gradient flow could be involved. We propose analysis for the reflection manifold in iHiSD and then prove its stable and nonlocal convergence from stationary points that may not be close to the target saddle point, which reduces the dependence of the convergence of HiSD on the initial value. We then present and analyze a discretized iHiSD for implementation. Furthermore, based on Morse theory, we prove that any two saddle points could be connected by a sequence of trajectories of iHiSD. Ideally, this implies that a solution landscape with a finite number of stationary points could be completely constructed by means of iHiSD, which partly answers the completeness issue of the solution landscape for the first time and indicates the necessity of integrating the gradient flow in HiSD. Different methods are compared by numerical experiments to substantiate the effectiveness of the iHiSD method.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/25m173212x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/25m173212x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Improved High-Index Saddle Dynamics for Finding Saddle Points and Solution Landscape
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1757-1775, August 2025. Abstract. We present an improved high-index saddle dynamics (iHiSD) for finding saddle points and constructing solution landscapes, which is a crossover dynamics from gradient flow to traditional HiSD such that the Morse theory for gradient flow could be involved. We propose analysis for the reflection manifold in iHiSD and then prove its stable and nonlocal convergence from stationary points that may not be close to the target saddle point, which reduces the dependence of the convergence of HiSD on the initial value. We then present and analyze a discretized iHiSD for implementation. Furthermore, based on Morse theory, we prove that any two saddle points could be connected by a sequence of trajectories of iHiSD. Ideally, this implies that a solution landscape with a finite number of stationary points could be completely constructed by means of iHiSD, which partly answers the completeness issue of the solution landscape for the first time and indicates the necessity of integrating the gradient flow in HiSD. Different methods are compared by numerical experiments to substantiate the effectiveness of the iHiSD method.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.