用非规范伪标量重新考察暴涨期间的chen - simons相互作用

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Jun'ya Kume, Marco Peloso and Nicola Bartolo
{"title":"用非规范伪标量重新考察暴涨期间的chen - simons相互作用","authors":"Jun'ya Kume, Marco Peloso and Nicola Bartolo","doi":"10.1088/1475-7516/2025/08/044","DOIUrl":null,"url":null,"abstract":"A Chern-Simons interaction between a pseudo-scalar field and a U(1) gauge field results in the generation of a chiral gravitational wave background. The detection of this signal is contrasted by the fact that this coupling also generates primordial scalar perturbations, on which strong limits exist, particularly at CMB scales. In this study, we propose a new extension of this mechanism characterized by a non-canonical kinetic term for the pseudo-scalar. We find that a decrease of the sound speed of the pseudo-scalar field highly suppresses the sourced scalar with respect to the sourced tensor modes, thus effectively allowing for the production of a greater tensor signal. Contrary to the case of a canonical axion inflaton, it is in this case possible for the sourced tensor modes to dominate over the vacuum ones without violating the non-Gaussianity constraints from the scalar sector, which results in a nearly totally polarized tensor signal at CMB scales. We also study the extension of this mechanisms to the multiple field case, in which the axion is not the inflaton.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"739 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Chern-Simons interaction during inflation with a non-canonical pseudo-scalar\",\"authors\":\"Jun'ya Kume, Marco Peloso and Nicola Bartolo\",\"doi\":\"10.1088/1475-7516/2025/08/044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Chern-Simons interaction between a pseudo-scalar field and a U(1) gauge field results in the generation of a chiral gravitational wave background. The detection of this signal is contrasted by the fact that this coupling also generates primordial scalar perturbations, on which strong limits exist, particularly at CMB scales. In this study, we propose a new extension of this mechanism characterized by a non-canonical kinetic term for the pseudo-scalar. We find that a decrease of the sound speed of the pseudo-scalar field highly suppresses the sourced scalar with respect to the sourced tensor modes, thus effectively allowing for the production of a greater tensor signal. Contrary to the case of a canonical axion inflaton, it is in this case possible for the sourced tensor modes to dominate over the vacuum ones without violating the non-Gaussianity constraints from the scalar sector, which results in a nearly totally polarized tensor signal at CMB scales. We also study the extension of this mechanisms to the multiple field case, in which the axion is not the inflaton.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"739 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/08/044\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/08/044","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

伪标量场和U(1)规范场之间的chen - simons相互作用导致手性引力波背景的产生。与此信号的探测形成对比的是,这种耦合也会产生原始标量扰动,在这种扰动上存在很强的极限,特别是在CMB尺度上。在本研究中,我们提出了以伪标量的非正则动力学项为特征的这一机制的新扩展。我们发现,相对于源张量模式,伪标量场声速的降低高度抑制了源标量,从而有效地允许产生更大的张量信号。与典型轴子暴胀的情况相反,在这种情况下,源张量模式可能在不违反标量扇区的非高斯约束的情况下主导真空张量模式,这导致在CMB尺度上几乎完全极化的张量信号。我们还研究了这种机制在多场情况下的推广,其中轴子不是膨胀子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Chern-Simons interaction during inflation with a non-canonical pseudo-scalar
A Chern-Simons interaction between a pseudo-scalar field and a U(1) gauge field results in the generation of a chiral gravitational wave background. The detection of this signal is contrasted by the fact that this coupling also generates primordial scalar perturbations, on which strong limits exist, particularly at CMB scales. In this study, we propose a new extension of this mechanism characterized by a non-canonical kinetic term for the pseudo-scalar. We find that a decrease of the sound speed of the pseudo-scalar field highly suppresses the sourced scalar with respect to the sourced tensor modes, thus effectively allowing for the production of a greater tensor signal. Contrary to the case of a canonical axion inflaton, it is in this case possible for the sourced tensor modes to dominate over the vacuum ones without violating the non-Gaussianity constraints from the scalar sector, which results in a nearly totally polarized tensor signal at CMB scales. We also study the extension of this mechanisms to the multiple field case, in which the axion is not the inflaton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信