Hajar Hosseini, Connor J. Herring, Noshir S. Pesika and Matthew M. Montemore
{"title":"塑料在金纳米粒子上的等离子体降解:来自计算的电子尺度的见解","authors":"Hajar Hosseini, Connor J. Herring, Noshir S. Pesika and Matthew M. Montemore","doi":"10.1039/D5CP02319J","DOIUrl":null,"url":null,"abstract":"<p >The growth in demand for plastic products in our rapidly industrializing society has led to a surge in global plastic production. Plasmonic nanostructures can harness light energy for catalytic reactions, presenting a promising avenue for catalyzing plastic degradation. Through real-time, time-dependent density functional theory (RT-TDDFT) simulations, we find that plasmonic systems can significantly enhance photodegradation of polymers and we study the mechanism of plasmon-driven photodegradation. We first benchmark our methods by studying gas-phase monomers and achieve qualitative agreement between our methods and what is experimentally known: the gas-phase monomers react significantly to an applied field (<em>i.e.</em>, light) only for photosensitive polymers. We next find that gold nanoparticles can significantly enhance the degradation of both photosensitive and non-photosensitive monomers and oligomers. Interestingly, if any part of the oligomer is near the nanoparticle, the entire oligomer degrades, indicating that the degradation may be relatively long-ranged on the molecular scale. We also find that charge separation between C and H atoms correlates strongly with photodegradation for polyethylene oligomers.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 35","pages":" 18635-18644"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic degradation of plastics on gold nanoparticles: electronic-scale insights from computation\",\"authors\":\"Hajar Hosseini, Connor J. Herring, Noshir S. Pesika and Matthew M. Montemore\",\"doi\":\"10.1039/D5CP02319J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The growth in demand for plastic products in our rapidly industrializing society has led to a surge in global plastic production. Plasmonic nanostructures can harness light energy for catalytic reactions, presenting a promising avenue for catalyzing plastic degradation. Through real-time, time-dependent density functional theory (RT-TDDFT) simulations, we find that plasmonic systems can significantly enhance photodegradation of polymers and we study the mechanism of plasmon-driven photodegradation. We first benchmark our methods by studying gas-phase monomers and achieve qualitative agreement between our methods and what is experimentally known: the gas-phase monomers react significantly to an applied field (<em>i.e.</em>, light) only for photosensitive polymers. We next find that gold nanoparticles can significantly enhance the degradation of both photosensitive and non-photosensitive monomers and oligomers. Interestingly, if any part of the oligomer is near the nanoparticle, the entire oligomer degrades, indicating that the degradation may be relatively long-ranged on the molecular scale. We also find that charge separation between C and H atoms correlates strongly with photodegradation for polyethylene oligomers.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 35\",\"pages\":\" 18635-18644\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02319j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp02319j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Plasmonic degradation of plastics on gold nanoparticles: electronic-scale insights from computation
The growth in demand for plastic products in our rapidly industrializing society has led to a surge in global plastic production. Plasmonic nanostructures can harness light energy for catalytic reactions, presenting a promising avenue for catalyzing plastic degradation. Through real-time, time-dependent density functional theory (RT-TDDFT) simulations, we find that plasmonic systems can significantly enhance photodegradation of polymers and we study the mechanism of plasmon-driven photodegradation. We first benchmark our methods by studying gas-phase monomers and achieve qualitative agreement between our methods and what is experimentally known: the gas-phase monomers react significantly to an applied field (i.e., light) only for photosensitive polymers. We next find that gold nanoparticles can significantly enhance the degradation of both photosensitive and non-photosensitive monomers and oligomers. Interestingly, if any part of the oligomer is near the nanoparticle, the entire oligomer degrades, indicating that the degradation may be relatively long-ranged on the molecular scale. We also find that charge separation between C and H atoms correlates strongly with photodegradation for polyethylene oligomers.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.