PreDigs:用于消化细胞注释的上下文特异性细胞类型标记和精确细胞亚型数据库。

IF 7.9
Jiayue Meng, Mengyao Han, Yuwei Huang, Liang Li, Yuanhu Ju, Daqing Lv, Xiaoyi Chen, Liyun Yuan, Guoqing Zhang
{"title":"PreDigs:用于消化细胞注释的上下文特异性细胞类型标记和精确细胞亚型数据库。","authors":"Jiayue Meng, Mengyao Han, Yuwei Huang, Liang Li, Yuanhu Ju, Daqing Lv, Xiaoyi Chen, Liyun Yuan, Guoqing Zhang","doi":"10.1093/gpbjnl/qzaf066","DOIUrl":null,"url":null,"abstract":"<p><p>Research on cell type markers helps investigators explore the diverse cellular compositions of gastrointestinal tumors. This enhances our understanding of tumor heterogeneity and its impact on disease progression and treatment response. However, integrating large-scale datasets and the lack of standardized cell type identification remain challenges. Here, we developed PreDigs, a user-friendly database of predicted signatures in digestive system, which offers 124 curated single-cell RNA sequencing datasets, covering over 3.4 million cells, all available for download. After unsupervised clustering, we unified the identification and naming of subtype labels, constructing a cell ontology tree with 142 cell types across eight hierarchical levels. Meanwhile, we calculated three different context-specific cell-type markers, including \"Cell Markers\", \"Subtype Markers\", and \"TPN Markers\", based on various application requirements within or across tissues. Through the integrated analysis of PreDigs data, we identified distinct cell subpopulations exclusive to tumors, one of which corresponds to tumor-specific endothelial cells. Additionally, PreDigs offers online cell annotation tools, allowing users to classify single cells with greater flexibility. PreDigs is accessible at https://www.biosino.org/predigs/.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PreDigs: A Database of Context-specific Cell-type Markers and Precise Cell Subtypes for Digestive Cell Annotation.\",\"authors\":\"Jiayue Meng, Mengyao Han, Yuwei Huang, Liang Li, Yuanhu Ju, Daqing Lv, Xiaoyi Chen, Liyun Yuan, Guoqing Zhang\",\"doi\":\"10.1093/gpbjnl/qzaf066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on cell type markers helps investigators explore the diverse cellular compositions of gastrointestinal tumors. This enhances our understanding of tumor heterogeneity and its impact on disease progression and treatment response. However, integrating large-scale datasets and the lack of standardized cell type identification remain challenges. Here, we developed PreDigs, a user-friendly database of predicted signatures in digestive system, which offers 124 curated single-cell RNA sequencing datasets, covering over 3.4 million cells, all available for download. After unsupervised clustering, we unified the identification and naming of subtype labels, constructing a cell ontology tree with 142 cell types across eight hierarchical levels. Meanwhile, we calculated three different context-specific cell-type markers, including \\\"Cell Markers\\\", \\\"Subtype Markers\\\", and \\\"TPN Markers\\\", based on various application requirements within or across tissues. Through the integrated analysis of PreDigs data, we identified distinct cell subpopulations exclusive to tumors, one of which corresponds to tumor-specific endothelial cells. Additionally, PreDigs offers online cell annotation tools, allowing users to classify single cells with greater flexibility. PreDigs is accessible at https://www.biosino.org/predigs/.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzaf066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞类型标记的研究有助于研究人员探索胃肠道肿瘤的不同细胞组成。这增强了我们对肿瘤异质性及其对疾病进展和治疗反应的影响的理解。然而,整合大规模数据集和缺乏标准化的细胞类型识别仍然是挑战。在这里,我们开发了PreDigs,一个用户友好的消化系统预测特征数据库,它提供124个策划单细胞RNA测序数据集,覆盖超过340万个细胞,所有这些数据集都可以下载。在无监督聚类之后,我们统一了子类型标签的识别和命名,构建了包含8个层次142种细胞类型的细胞本体树。同时,我们根据组织内或组织间的不同应用需求,计算了三种不同的上下文特异性细胞类型标记,包括“细胞标记”、“亚型标记”和“TPN标记”。通过对PreDigs数据的综合分析,我们确定了肿瘤独有的不同细胞亚群,其中一个亚群对应于肿瘤特异性内皮细胞。此外,PreDigs还提供在线细胞注释工具,允许用户更灵活地对单个细胞进行分类。PreDigs可在https://www.biosino.org/predigs/访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PreDigs: A Database of Context-specific Cell-type Markers and Precise Cell Subtypes for Digestive Cell Annotation.

Research on cell type markers helps investigators explore the diverse cellular compositions of gastrointestinal tumors. This enhances our understanding of tumor heterogeneity and its impact on disease progression and treatment response. However, integrating large-scale datasets and the lack of standardized cell type identification remain challenges. Here, we developed PreDigs, a user-friendly database of predicted signatures in digestive system, which offers 124 curated single-cell RNA sequencing datasets, covering over 3.4 million cells, all available for download. After unsupervised clustering, we unified the identification and naming of subtype labels, constructing a cell ontology tree with 142 cell types across eight hierarchical levels. Meanwhile, we calculated three different context-specific cell-type markers, including "Cell Markers", "Subtype Markers", and "TPN Markers", based on various application requirements within or across tissues. Through the integrated analysis of PreDigs data, we identified distinct cell subpopulations exclusive to tumors, one of which corresponds to tumor-specific endothelial cells. Additionally, PreDigs offers online cell annotation tools, allowing users to classify single cells with greater flexibility. PreDigs is accessible at https://www.biosino.org/predigs/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信