{"title":"Robin2:加速单细胞数据聚类评估。","authors":"Valeria Policastro, Dario Righelli, Luisa Cutillo, Annamaria Carissimo","doi":"10.1093/bioadv/vbaf184","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R's base functionalities for robust network analysis.</p><p><strong>Results: </strong>robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algorithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large-scale datasets using parallel processing.</p><p><strong>Availability and implementation: </strong>The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin. Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf184"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341891/pdf/","citationCount":"0","resultStr":"{\"title\":\"robin2: accelerating single-cell data clustering evaluation.\",\"authors\":\"Valeria Policastro, Dario Righelli, Luisa Cutillo, Annamaria Carissimo\",\"doi\":\"10.1093/bioadv/vbaf184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R's base functionalities for robust network analysis.</p><p><strong>Results: </strong>robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algorithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large-scale datasets using parallel processing.</p><p><strong>Availability and implementation: </strong>The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin. Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf184\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
robin2: accelerating single-cell data clustering evaluation.
Motivation: The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R's base functionalities for robust network analysis.
Results: robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algorithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large-scale datasets using parallel processing.
Availability and implementation: The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin. Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.