下一代生物银行本体:将组学上下文数据引入生物银行本体。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-08-07 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf131
Dalia Alghamdi, Damion M Dooley, Mannar Samman, Ali AlFaiz, William W L Hsiao
{"title":"下一代生物银行本体:将组学上下文数据引入生物银行本体。","authors":"Dalia Alghamdi, Damion M Dooley, Mannar Samman, Ali AlFaiz, William W L Hsiao","doi":"10.1093/bioadv/vbaf131","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>With improvements in high throughput sequencing technologies and the constant generation of large biomedical datasets, biobanks increasingly take on the role of managing and delivering not just specimens but also specimen-derived data and associated contextual data. However, reusing data from different biobanks is challenged by incompatible data representations. Contextual data describing biobank resources often contains unstructured textual information incompatible with computational processes such as automated data discovery and integration. Therefore, a consistent and comprehensive contextual data framework is needed to increase discovery, reusability, and integrability across data sources.</p><p><strong>Results: </strong>The next generation biobanking ontology is an open-source application ontology representing omics contextual data, licensed under the Creative Commons 4.0 license. The ontology focuses on capturing information about three main activities: wet bench analysis used to generate omics data, bioinformatics analysis used to process and interpret data, and data management. In this paper, we demonstrated the use of the ontology to add semantic statements to real-life use cases and query data previously stored in unstructured textual format.</p><p><strong>Availability and implementation: </strong>NGBO is freely available at https://github.com/Dalalghamdi/NGBO, and accessible from OLS https://www.ebi.ac.uk/ols4/ontologies/ngbo.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf131"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Next generation biobanking ontology: introducing-omics contextual data to biobanking ontology.\",\"authors\":\"Dalia Alghamdi, Damion M Dooley, Mannar Samman, Ali AlFaiz, William W L Hsiao\",\"doi\":\"10.1093/bioadv/vbaf131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>With improvements in high throughput sequencing technologies and the constant generation of large biomedical datasets, biobanks increasingly take on the role of managing and delivering not just specimens but also specimen-derived data and associated contextual data. However, reusing data from different biobanks is challenged by incompatible data representations. Contextual data describing biobank resources often contains unstructured textual information incompatible with computational processes such as automated data discovery and integration. Therefore, a consistent and comprehensive contextual data framework is needed to increase discovery, reusability, and integrability across data sources.</p><p><strong>Results: </strong>The next generation biobanking ontology is an open-source application ontology representing omics contextual data, licensed under the Creative Commons 4.0 license. The ontology focuses on capturing information about three main activities: wet bench analysis used to generate omics data, bioinformatics analysis used to process and interpret data, and data management. In this paper, we demonstrated the use of the ontology to add semantic statements to real-life use cases and query data previously stored in unstructured textual format.</p><p><strong>Availability and implementation: </strong>NGBO is freely available at https://github.com/Dalalghamdi/NGBO, and accessible from OLS https://www.ebi.ac.uk/ols4/ontologies/ngbo.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf131\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:随着高通量测序技术的进步和大型生物医学数据集的不断产生,生物银行越来越多地承担着管理和提供标本的角色,而且还承担着标本衍生数据和相关背景数据的角色。然而,重用来自不同生物库的数据受到不兼容的数据表示的挑战。描述生物库资源的上下文数据通常包含与自动数据发现和集成等计算过程不兼容的非结构化文本信息。因此,需要一个一致和全面的上下文数据框架来增加跨数据源的发现、可重用性和可集成性。结果:下一代生物银行本体是一个表示组学上下文数据的开源应用本体,采用知识共享4.0许可协议。本体论侧重于捕获有关三个主要活动的信息:用于生成组学数据的湿台式分析,用于处理和解释数据的生物信息学分析,以及数据管理。在本文中,我们演示了如何使用本体将语义语句添加到实际用例中,并查询以前以非结构化文本格式存储的数据。可用性和实现:NGBO可在https://github.com/Dalalghamdi/NGBO免费获得,也可从OLS https://www.ebi.ac.uk/ols4/ontologies/ngbo访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next generation biobanking ontology: introducing-omics contextual data to biobanking ontology.

Motivation: With improvements in high throughput sequencing technologies and the constant generation of large biomedical datasets, biobanks increasingly take on the role of managing and delivering not just specimens but also specimen-derived data and associated contextual data. However, reusing data from different biobanks is challenged by incompatible data representations. Contextual data describing biobank resources often contains unstructured textual information incompatible with computational processes such as automated data discovery and integration. Therefore, a consistent and comprehensive contextual data framework is needed to increase discovery, reusability, and integrability across data sources.

Results: The next generation biobanking ontology is an open-source application ontology representing omics contextual data, licensed under the Creative Commons 4.0 license. The ontology focuses on capturing information about three main activities: wet bench analysis used to generate omics data, bioinformatics analysis used to process and interpret data, and data management. In this paper, we demonstrated the use of the ontology to add semantic statements to real-life use cases and query data previously stored in unstructured textual format.

Availability and implementation: NGBO is freely available at https://github.com/Dalalghamdi/NGBO, and accessible from OLS https://www.ebi.ac.uk/ols4/ontologies/ngbo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信