基于非负/二值矩阵分解的协同过滤。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-07-29 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1599704
Yukino Terui, Yuka Inoue, Yohei Hamakawa, Kosuke Tatsumura, Kazue Kudo
{"title":"基于非负/二值矩阵分解的协同过滤。","authors":"Yukino Terui, Yuka Inoue, Yohei Hamakawa, Kosuke Tatsumura, Kazue Kudo","doi":"10.3389/fdata.2025.1599704","DOIUrl":null,"url":null,"abstract":"<p><p>Collaborative filtering generates recommendations by exploiting user-item similarities based on rating data, which often contains numerous unrated items. To predict scores for unrated items, matrix factorization techniques such as nonnegative matrix factorization (NMF) are often employed. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. While previous studies have applied NBMF primarily to dense data such as images, this paper proposes a modified NBMF algorithm tailored for collaborative filtering with sparse data. In the modified method, unrated entries in the rating matrix are masked, enhancing prediction accuracy. Furthermore, utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1599704"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Collaborative filtering based on nonnegative/binary matrix factorization.\",\"authors\":\"Yukino Terui, Yuka Inoue, Yohei Hamakawa, Kosuke Tatsumura, Kazue Kudo\",\"doi\":\"10.3389/fdata.2025.1599704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collaborative filtering generates recommendations by exploiting user-item similarities based on rating data, which often contains numerous unrated items. To predict scores for unrated items, matrix factorization techniques such as nonnegative matrix factorization (NMF) are often employed. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. While previous studies have applied NBMF primarily to dense data such as images, this paper proposes a modified NBMF algorithm tailored for collaborative filtering with sparse data. In the modified method, unrated entries in the rating matrix are masked, enhancing prediction accuracy. Furthermore, utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"8 \",\"pages\":\"1599704\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2025.1599704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1599704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

协同过滤通过利用基于评级数据的用户-项目相似性来生成推荐,这些评级数据通常包含许多未评级的项目。为了预测未评分项目的分数,通常采用非负矩阵分解(NMF)等矩阵分解技术。非负/二元矩阵分解(NBMF)是NMF的扩展,它将非负矩阵近似为非负矩阵与二元矩阵的乘积。虽然以前的研究主要将NBMF应用于图像等密集数据,但本文提出了一种针对稀疏数据进行协同过滤的改进NBMF算法。改进后的方法对评级矩阵中的未评级项进行了屏蔽,提高了预测精度。此外,在NBMF中使用低延迟的伊辛机在计算时间方面是有利的,使得所提出的方法是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative filtering based on nonnegative/binary matrix factorization.

Collaborative filtering generates recommendations by exploiting user-item similarities based on rating data, which often contains numerous unrated items. To predict scores for unrated items, matrix factorization techniques such as nonnegative matrix factorization (NMF) are often employed. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. While previous studies have applied NBMF primarily to dense data such as images, this paper proposes a modified NBMF algorithm tailored for collaborative filtering with sparse data. In the modified method, unrated entries in the rating matrix are masked, enhancing prediction accuracy. Furthermore, utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信