基于纵向多尺度融合网络的视网膜眼底硬渗出物分割。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shuang Liu, Xiangyu Jiang, Jie Zhang, Wei Zou
{"title":"基于纵向多尺度融合网络的视网膜眼底硬渗出物分割。","authors":"Shuang Liu, Xiangyu Jiang, Jie Zhang, Wei Zou","doi":"10.1007/s11517-025-03426-7","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of hard exudate in fundus images is crucial for early diagnosis of retinal diseases. However, hard exudate segmentation is still a challenge task for accurately detecting small lesions and precisely locating the boundaries of ambiguous lesions. In this paper, the longitudinal multi-scale fusion network (LMSF-Net) is proposed for accurate hard exudate segmentation in fundus images. In this network, an adjacent complementary correction module (ACCM) is proposed on the encoding path for complementary fusion between adjacent encoding features, and a progressive iterative fusion module (PIFM) is designed on the decoding path for fusion between adjacent decoding features. Furthermore, a spatial awareness fusion module (SAFM) is proposed at the end of the decoding path for calibration and aggregation of the two decoding outputs. The proposed method can improve segmentation results of hard exudates with different scales and shapes. The experimental results confirm the superiority of the proposed method for hard exudate segmentation with AUPR of 0.6954, 0.9017, and 0.6745 on the DDR, IDRID, and E-Ophtha EX datasets, respectively.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hard exudates segmentation for retinal fundus images based on longitudinal multi-scale fusion network.\",\"authors\":\"Shuang Liu, Xiangyu Jiang, Jie Zhang, Wei Zou\",\"doi\":\"10.1007/s11517-025-03426-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate segmentation of hard exudate in fundus images is crucial for early diagnosis of retinal diseases. However, hard exudate segmentation is still a challenge task for accurately detecting small lesions and precisely locating the boundaries of ambiguous lesions. In this paper, the longitudinal multi-scale fusion network (LMSF-Net) is proposed for accurate hard exudate segmentation in fundus images. In this network, an adjacent complementary correction module (ACCM) is proposed on the encoding path for complementary fusion between adjacent encoding features, and a progressive iterative fusion module (PIFM) is designed on the decoding path for fusion between adjacent decoding features. Furthermore, a spatial awareness fusion module (SAFM) is proposed at the end of the decoding path for calibration and aggregation of the two decoding outputs. The proposed method can improve segmentation results of hard exudates with different scales and shapes. The experimental results confirm the superiority of the proposed method for hard exudate segmentation with AUPR of 0.6954, 0.9017, and 0.6745 on the DDR, IDRID, and E-Ophtha EX datasets, respectively.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03426-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03426-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

眼底硬渗出物图像的准确分割对视网膜疾病的早期诊断至关重要。然而,对于小病灶的准确检测和模糊病灶边界的精确定位,硬渗出物分割仍然是一个具有挑战性的任务。本文提出了纵向多尺度融合网络(LMSF-Net)对眼底图像硬渗出物进行精确分割的方法。该网络在编码路径上提出了相邻互补校正模块(ACCM)用于相邻编码特征之间的互补融合,在解码路径上设计了渐进迭代融合模块(PIFM)用于相邻解码特征之间的融合。此外,在解码路径的末端提出了空间感知融合模块(SAFM),用于两个解码输出的校准和聚合。该方法可以改善不同尺度和形状的硬渗出物的分割效果。实验结果表明,该方法在DDR、IDRID和E-Ophtha EX数据集上的AUPR分别为0.6954、0.9017和0.6745,具有较好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hard exudates segmentation for retinal fundus images based on longitudinal multi-scale fusion network.

Accurate segmentation of hard exudate in fundus images is crucial for early diagnosis of retinal diseases. However, hard exudate segmentation is still a challenge task for accurately detecting small lesions and precisely locating the boundaries of ambiguous lesions. In this paper, the longitudinal multi-scale fusion network (LMSF-Net) is proposed for accurate hard exudate segmentation in fundus images. In this network, an adjacent complementary correction module (ACCM) is proposed on the encoding path for complementary fusion between adjacent encoding features, and a progressive iterative fusion module (PIFM) is designed on the decoding path for fusion between adjacent decoding features. Furthermore, a spatial awareness fusion module (SAFM) is proposed at the end of the decoding path for calibration and aggregation of the two decoding outputs. The proposed method can improve segmentation results of hard exudates with different scales and shapes. The experimental results confirm the superiority of the proposed method for hard exudate segmentation with AUPR of 0.6954, 0.9017, and 0.6745 on the DDR, IDRID, and E-Ophtha EX datasets, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信