{"title":"基于纵向多尺度融合网络的视网膜眼底硬渗出物分割。","authors":"Shuang Liu, Xiangyu Jiang, Jie Zhang, Wei Zou","doi":"10.1007/s11517-025-03426-7","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of hard exudate in fundus images is crucial for early diagnosis of retinal diseases. However, hard exudate segmentation is still a challenge task for accurately detecting small lesions and precisely locating the boundaries of ambiguous lesions. In this paper, the longitudinal multi-scale fusion network (LMSF-Net) is proposed for accurate hard exudate segmentation in fundus images. In this network, an adjacent complementary correction module (ACCM) is proposed on the encoding path for complementary fusion between adjacent encoding features, and a progressive iterative fusion module (PIFM) is designed on the decoding path for fusion between adjacent decoding features. Furthermore, a spatial awareness fusion module (SAFM) is proposed at the end of the decoding path for calibration and aggregation of the two decoding outputs. The proposed method can improve segmentation results of hard exudates with different scales and shapes. The experimental results confirm the superiority of the proposed method for hard exudate segmentation with AUPR of 0.6954, 0.9017, and 0.6745 on the DDR, IDRID, and E-Ophtha EX datasets, respectively.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hard exudates segmentation for retinal fundus images based on longitudinal multi-scale fusion network.\",\"authors\":\"Shuang Liu, Xiangyu Jiang, Jie Zhang, Wei Zou\",\"doi\":\"10.1007/s11517-025-03426-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate segmentation of hard exudate in fundus images is crucial for early diagnosis of retinal diseases. However, hard exudate segmentation is still a challenge task for accurately detecting small lesions and precisely locating the boundaries of ambiguous lesions. In this paper, the longitudinal multi-scale fusion network (LMSF-Net) is proposed for accurate hard exudate segmentation in fundus images. In this network, an adjacent complementary correction module (ACCM) is proposed on the encoding path for complementary fusion between adjacent encoding features, and a progressive iterative fusion module (PIFM) is designed on the decoding path for fusion between adjacent decoding features. Furthermore, a spatial awareness fusion module (SAFM) is proposed at the end of the decoding path for calibration and aggregation of the two decoding outputs. The proposed method can improve segmentation results of hard exudates with different scales and shapes. The experimental results confirm the superiority of the proposed method for hard exudate segmentation with AUPR of 0.6954, 0.9017, and 0.6745 on the DDR, IDRID, and E-Ophtha EX datasets, respectively.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03426-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03426-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hard exudates segmentation for retinal fundus images based on longitudinal multi-scale fusion network.
Accurate segmentation of hard exudate in fundus images is crucial for early diagnosis of retinal diseases. However, hard exudate segmentation is still a challenge task for accurately detecting small lesions and precisely locating the boundaries of ambiguous lesions. In this paper, the longitudinal multi-scale fusion network (LMSF-Net) is proposed for accurate hard exudate segmentation in fundus images. In this network, an adjacent complementary correction module (ACCM) is proposed on the encoding path for complementary fusion between adjacent encoding features, and a progressive iterative fusion module (PIFM) is designed on the decoding path for fusion between adjacent decoding features. Furthermore, a spatial awareness fusion module (SAFM) is proposed at the end of the decoding path for calibration and aggregation of the two decoding outputs. The proposed method can improve segmentation results of hard exudates with different scales and shapes. The experimental results confirm the superiority of the proposed method for hard exudate segmentation with AUPR of 0.6954, 0.9017, and 0.6745 on the DDR, IDRID, and E-Ophtha EX datasets, respectively.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).