生成AI摘要以促进ED切换。

IF 2.2 2区 医学 Q4 MEDICAL INFORMATICS
Applied Clinical Informatics Pub Date : 2025-08-01 Epub Date: 2025-08-12 DOI:10.1055/a-2681-5008
Nicholas Genes, Gregory Simon, Christian Koziatek, Jung G Kim, Kar-Mun Woo, Cassidy Dahn, Leland Chan, Batia Wiesenfeld
{"title":"生成AI摘要以促进ED切换。","authors":"Nicholas Genes, Gregory Simon, Christian Koziatek, Jung G Kim, Kar-Mun Woo, Cassidy Dahn, Leland Chan, Batia Wiesenfeld","doi":"10.1055/a-2681-5008","DOIUrl":null,"url":null,"abstract":"<p><p>Emergency department (ED) handoff to inpatient teams is a potential source of error. Generative artificial intelligence (AI) has shown promise in succinctly summarizing large quantities of clinical data and may help improve ED handoff.Our objectives were to: (1) evaluate the accuracy, clinical utility, and safety of AI-generated ED-to-inpatient handoff summaries; (2) identify patient and visit characteristics influencing summary effectiveness; and (3) characterize potential error patterns to inform implementation strategies.This exploratory study evaluated AI-generated handoff summaries at an urban academic ED (February-April 2024). A Health Insurance Portability and Accountability Act-compliant GPT-4 model generated summaries aligned with the IPASS framework; ED providers assessed summary accuracy, usefulness, and safety through on-shift surveys.Among 50 cases, median quality and usefulness scores were 4/5 (standard error = 0.13). Safety concerns arose in 6% of cases, with issues including data omissions and mischaracterizations. Consultation status significantly affected usefulness scores (<i>p</i> < 0.05). Omissions of relevant medications, laboratory results, and other essential details were noted (<i>n</i> = 6), and emergency medicine clinicians disagreed with some AI characterizations of patient stability, vitals, and workup (<i>n</i> = 8). The most common response was positive impressions of the technology incorporated into the handoff process (<i>n</i> = 11).This exploratory provider-in-the-loop model demonstrated clinical acceptability and highlighted areas for refinement. Future studies should incorporate recipient perspectives and examine clinical outcomes to scale and optimize AI implementation.</p>","PeriodicalId":48956,"journal":{"name":"Applied Clinical Informatics","volume":" ","pages":"1185-1191"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473522/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generative Artificial Intelligence Summaries to Facilitate Emergency Department Handoff.\",\"authors\":\"Nicholas Genes, Gregory Simon, Christian Koziatek, Jung G Kim, Kar-Mun Woo, Cassidy Dahn, Leland Chan, Batia Wiesenfeld\",\"doi\":\"10.1055/a-2681-5008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emergency department (ED) handoff to inpatient teams is a potential source of error. Generative artificial intelligence (AI) has shown promise in succinctly summarizing large quantities of clinical data and may help improve ED handoff.Our objectives were to: (1) evaluate the accuracy, clinical utility, and safety of AI-generated ED-to-inpatient handoff summaries; (2) identify patient and visit characteristics influencing summary effectiveness; and (3) characterize potential error patterns to inform implementation strategies.This exploratory study evaluated AI-generated handoff summaries at an urban academic ED (February-April 2024). A Health Insurance Portability and Accountability Act-compliant GPT-4 model generated summaries aligned with the IPASS framework; ED providers assessed summary accuracy, usefulness, and safety through on-shift surveys.Among 50 cases, median quality and usefulness scores were 4/5 (standard error = 0.13). Safety concerns arose in 6% of cases, with issues including data omissions and mischaracterizations. Consultation status significantly affected usefulness scores (<i>p</i> < 0.05). Omissions of relevant medications, laboratory results, and other essential details were noted (<i>n</i> = 6), and emergency medicine clinicians disagreed with some AI characterizations of patient stability, vitals, and workup (<i>n</i> = 8). The most common response was positive impressions of the technology incorporated into the handoff process (<i>n</i> = 11).This exploratory provider-in-the-loop model demonstrated clinical acceptability and highlighted areas for refinement. Future studies should incorporate recipient perspectives and examine clinical outcomes to scale and optimize AI implementation.</p>\",\"PeriodicalId\":48956,\"journal\":{\"name\":\"Applied Clinical Informatics\",\"volume\":\" \",\"pages\":\"1185-1191\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473522/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clinical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2681-5008\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clinical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2681-5008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:急诊科(ED)移交给住院团队是一个潜在的错误来源。生成式人工智能(AI)在简洁地总结大量临床数据方面显示出了希望,并可能有助于改善急诊科(ED)的交接。我们的目标是:1)评估人工智能生成的ed -to-住院交接摘要的准确性、临床实用性和安全性;2)识别影响总结效果的患者和就诊特征;3)描述潜在的错误模式,为实现策略提供信息。本探索性研究评估了人工智能在城市学术ED(2024年2月至4月)生成的交接总结。符合hipaa的GPT-4模型生成与IPASS框架一致的摘要;ED供应商通过当班调查评估总结的准确性、有效性和安全性。结果50例患者中位质量和有用性评分为4/5分(SE = 0.13)。在6%的案例中出现了安全问题,包括数据遗漏和错误描述。会诊状态显著影响有用性评分(p < 0.05)。遗漏了相关药物、实验室结果和其他重要细节(n=6), EM临床医生不同意患者稳定性、生命体征和随访的一些AI特征(n=8)。最常见的反应是对技术融入移交过程的积极印象(n=11)。结论:该探索性提供者-环内模式具有临床可接受性,并突出了需要改进的领域。未来的研究应纳入接受者的观点,并检查临床结果,以扩大和优化人工智能的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Artificial Intelligence Summaries to Facilitate Emergency Department Handoff.

Emergency department (ED) handoff to inpatient teams is a potential source of error. Generative artificial intelligence (AI) has shown promise in succinctly summarizing large quantities of clinical data and may help improve ED handoff.Our objectives were to: (1) evaluate the accuracy, clinical utility, and safety of AI-generated ED-to-inpatient handoff summaries; (2) identify patient and visit characteristics influencing summary effectiveness; and (3) characterize potential error patterns to inform implementation strategies.This exploratory study evaluated AI-generated handoff summaries at an urban academic ED (February-April 2024). A Health Insurance Portability and Accountability Act-compliant GPT-4 model generated summaries aligned with the IPASS framework; ED providers assessed summary accuracy, usefulness, and safety through on-shift surveys.Among 50 cases, median quality and usefulness scores were 4/5 (standard error = 0.13). Safety concerns arose in 6% of cases, with issues including data omissions and mischaracterizations. Consultation status significantly affected usefulness scores (p < 0.05). Omissions of relevant medications, laboratory results, and other essential details were noted (n = 6), and emergency medicine clinicians disagreed with some AI characterizations of patient stability, vitals, and workup (n = 8). The most common response was positive impressions of the technology incorporated into the handoff process (n = 11).This exploratory provider-in-the-loop model demonstrated clinical acceptability and highlighted areas for refinement. Future studies should incorporate recipient perspectives and examine clinical outcomes to scale and optimize AI implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Clinical Informatics
Applied Clinical Informatics MEDICAL INFORMATICS-
CiteScore
4.60
自引率
24.10%
发文量
132
期刊介绍: ACI is the third Schattauer journal dealing with biomedical and health informatics. It perfectly complements our other journals Öffnet internen Link im aktuellen FensterMethods of Information in Medicine and the Öffnet internen Link im aktuellen FensterYearbook of Medical Informatics. The Yearbook of Medical Informatics being the “Milestone” or state-of-the-art journal and Methods of Information in Medicine being the “Science and Research” journal of IMIA, ACI intends to be the “Practical” journal of IMIA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信