Salma A El-Marasy, Nesma M E Abo El-Nasr, Dina E ElMosbah, Marawan Elbaset
{"title":"西洛他唑通过调节PI3K/AKT/mTOR信号通路和自噬改善大鼠顺铂诱导的肾毒性","authors":"Salma A El-Marasy, Nesma M E Abo El-Nasr, Dina E ElMosbah, Marawan Elbaset","doi":"10.1080/15376516.2025.2545577","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the nephroprotective effect of Cilostazol on Cisplatin-induced nephrotoxicity. Female Wistar albino rats were divided into four groups: normal, Cis (8 mg/kg), and two Cilostazol treatment groups (30 and 60 mg/kg) with cisplatin. Cisplatin application significantly deteriorated renal function- manifested by increased serum creatinine (261%) and BUN (134%)-and enhanced oxidative stress-characterized by increased MDA (234%) and decreased GSH (64%). Cisplatin also affected autophagy markers, which included a 62% decrease in P62 and a doubling of LC3II. The PI3K/AKT/mTOR signaling pathway was significantly downregulated with reductions in PI3K (72%), mTOR (73%), and p-AKT/AKT ratio. NF-κB p65 was also increased by 1.5-fold. Moreover, an observed pronounced increase in the expression of TNF-α, caspase-3, and beclin-1 of the cisplatin-intoxicated rats. At the same time, Cilostazol (30 or 60 mg/kg) significantly reversed these changes, with a dose-dependent nephroprotective effect. At a higher dose (60 mg/kg), most parameters were comparable to the normal group, demonstrating superiority over the 30 mg/kg dose. These findings underpin that cilostazol modulates oxidative stress, inflammation, and autophagy pathways mainly via the PI3K/AKT/mTOR signaling axis to exert its renoprotective effect. Thus, cilostazol provides a promising potential in preventing cisplatin-induced nephrotoxicity. This outcome paves the way for the possible co-administration of cilostazol in the clinical realm to spare the deleterious effects of cisplatin.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-15"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cilostazol Ameliorates Cisplatin-induced Nephrotoxicity via Modulation of PI3K/AKT/mTOR Signaling Pathway and Autophagy in Rats.\",\"authors\":\"Salma A El-Marasy, Nesma M E Abo El-Nasr, Dina E ElMosbah, Marawan Elbaset\",\"doi\":\"10.1080/15376516.2025.2545577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to evaluate the nephroprotective effect of Cilostazol on Cisplatin-induced nephrotoxicity. Female Wistar albino rats were divided into four groups: normal, Cis (8 mg/kg), and two Cilostazol treatment groups (30 and 60 mg/kg) with cisplatin. Cisplatin application significantly deteriorated renal function- manifested by increased serum creatinine (261%) and BUN (134%)-and enhanced oxidative stress-characterized by increased MDA (234%) and decreased GSH (64%). Cisplatin also affected autophagy markers, which included a 62% decrease in P62 and a doubling of LC3II. The PI3K/AKT/mTOR signaling pathway was significantly downregulated with reductions in PI3K (72%), mTOR (73%), and p-AKT/AKT ratio. NF-κB p65 was also increased by 1.5-fold. Moreover, an observed pronounced increase in the expression of TNF-α, caspase-3, and beclin-1 of the cisplatin-intoxicated rats. At the same time, Cilostazol (30 or 60 mg/kg) significantly reversed these changes, with a dose-dependent nephroprotective effect. At a higher dose (60 mg/kg), most parameters were comparable to the normal group, demonstrating superiority over the 30 mg/kg dose. These findings underpin that cilostazol modulates oxidative stress, inflammation, and autophagy pathways mainly via the PI3K/AKT/mTOR signaling axis to exert its renoprotective effect. Thus, cilostazol provides a promising potential in preventing cisplatin-induced nephrotoxicity. This outcome paves the way for the possible co-administration of cilostazol in the clinical realm to spare the deleterious effects of cisplatin.</p>\",\"PeriodicalId\":23177,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2025.2545577\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2025.2545577","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Cilostazol Ameliorates Cisplatin-induced Nephrotoxicity via Modulation of PI3K/AKT/mTOR Signaling Pathway and Autophagy in Rats.
This study aimed to evaluate the nephroprotective effect of Cilostazol on Cisplatin-induced nephrotoxicity. Female Wistar albino rats were divided into four groups: normal, Cis (8 mg/kg), and two Cilostazol treatment groups (30 and 60 mg/kg) with cisplatin. Cisplatin application significantly deteriorated renal function- manifested by increased serum creatinine (261%) and BUN (134%)-and enhanced oxidative stress-characterized by increased MDA (234%) and decreased GSH (64%). Cisplatin also affected autophagy markers, which included a 62% decrease in P62 and a doubling of LC3II. The PI3K/AKT/mTOR signaling pathway was significantly downregulated with reductions in PI3K (72%), mTOR (73%), and p-AKT/AKT ratio. NF-κB p65 was also increased by 1.5-fold. Moreover, an observed pronounced increase in the expression of TNF-α, caspase-3, and beclin-1 of the cisplatin-intoxicated rats. At the same time, Cilostazol (30 or 60 mg/kg) significantly reversed these changes, with a dose-dependent nephroprotective effect. At a higher dose (60 mg/kg), most parameters were comparable to the normal group, demonstrating superiority over the 30 mg/kg dose. These findings underpin that cilostazol modulates oxidative stress, inflammation, and autophagy pathways mainly via the PI3K/AKT/mTOR signaling axis to exert its renoprotective effect. Thus, cilostazol provides a promising potential in preventing cisplatin-induced nephrotoxicity. This outcome paves the way for the possible co-administration of cilostazol in the clinical realm to spare the deleterious effects of cisplatin.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.