{"title":"ro 106-9920抑制nF-κB通过调节中性粒细胞胞外陷阱形成减轻急性肾损伤小鼠缺血/再灌注诱导的肾功能障碍和炎症。","authors":"Ming Wang, Feng Gao","doi":"10.1080/0886022X.2025.2545983","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophil extracellular trap (NET) formation has been proven to take part in the exacerbation of acute kidney injury (AKI). Ro 106-9920, an effective inhibitor of nuclear factor kappa B (NF-κB) signal, could abrogate the formation of NETs. Herein, we explored whether Ro 106-9920 (Ro) exerts a protective role in AKI by repressing NET formation. The AKI model was induced with 30 min-bilateral renal ischemia followed by reperfusion. After finishing the 7-day treatment of Ro or vehicle, blood and the kidney were collected from each mouse for further analysis. Enzyme-linked immunosorbent assay, H&E, and TUNEL staining, immunohistochemistry, as well as Western blot were carried out to observe the kidney function, renal damage, apoptosis, and inflammation, and to preliminarily uncover the underlying mechanism. Administration with Ro effectively protected against AKI in a dose-dependent manner, as proven by the reduction of serum creatinine, serum neutrophil gelatinase-associated lipocalin, blood urea nitrogen, and serum inflammatory cytokine in AKI models after its administration. Moreover, Ro significantly alleviated morphological damage, kidney cells apoptosis, as well as inflammatory cytokine secretion in renal tissues. Mechanically, phosphorylation of NF-κB and myeloperoxidase activity were observed in renal tissues of AKI models, which suggested NF-κB activation and NETosis occurred in AKI. Notably, Ro treatment could significantly repress the nuclear translocation of NF-κB and the increased myeloperoxidase activity. Ro has a protective potential on ischemia/reperfusion-induced AKI by attenuating apoptosis and inflammation, perhaps by suppressing NF-κB activation and is associated with reduced NETosis.</p>","PeriodicalId":20839,"journal":{"name":"Renal Failure","volume":"47 1","pages":"2545983"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344707/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppression of nF-κB by ro 106-9920 alleviates ischemia/reperfusion-induced renal dysfunction and inflammation via modulation of neutrophil extracellular trap formation in acute kidney injury mice.\",\"authors\":\"Ming Wang, Feng Gao\",\"doi\":\"10.1080/0886022X.2025.2545983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutrophil extracellular trap (NET) formation has been proven to take part in the exacerbation of acute kidney injury (AKI). Ro 106-9920, an effective inhibitor of nuclear factor kappa B (NF-κB) signal, could abrogate the formation of NETs. Herein, we explored whether Ro 106-9920 (Ro) exerts a protective role in AKI by repressing NET formation. The AKI model was induced with 30 min-bilateral renal ischemia followed by reperfusion. After finishing the 7-day treatment of Ro or vehicle, blood and the kidney were collected from each mouse for further analysis. Enzyme-linked immunosorbent assay, H&E, and TUNEL staining, immunohistochemistry, as well as Western blot were carried out to observe the kidney function, renal damage, apoptosis, and inflammation, and to preliminarily uncover the underlying mechanism. Administration with Ro effectively protected against AKI in a dose-dependent manner, as proven by the reduction of serum creatinine, serum neutrophil gelatinase-associated lipocalin, blood urea nitrogen, and serum inflammatory cytokine in AKI models after its administration. Moreover, Ro significantly alleviated morphological damage, kidney cells apoptosis, as well as inflammatory cytokine secretion in renal tissues. Mechanically, phosphorylation of NF-κB and myeloperoxidase activity were observed in renal tissues of AKI models, which suggested NF-κB activation and NETosis occurred in AKI. Notably, Ro treatment could significantly repress the nuclear translocation of NF-κB and the increased myeloperoxidase activity. Ro has a protective potential on ischemia/reperfusion-induced AKI by attenuating apoptosis and inflammation, perhaps by suppressing NF-κB activation and is associated with reduced NETosis.</p>\",\"PeriodicalId\":20839,\"journal\":{\"name\":\"Renal Failure\",\"volume\":\"47 1\",\"pages\":\"2545983\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renal Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/0886022X.2025.2545983\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renal Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/0886022X.2025.2545983","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Suppression of nF-κB by ro 106-9920 alleviates ischemia/reperfusion-induced renal dysfunction and inflammation via modulation of neutrophil extracellular trap formation in acute kidney injury mice.
Neutrophil extracellular trap (NET) formation has been proven to take part in the exacerbation of acute kidney injury (AKI). Ro 106-9920, an effective inhibitor of nuclear factor kappa B (NF-κB) signal, could abrogate the formation of NETs. Herein, we explored whether Ro 106-9920 (Ro) exerts a protective role in AKI by repressing NET formation. The AKI model was induced with 30 min-bilateral renal ischemia followed by reperfusion. After finishing the 7-day treatment of Ro or vehicle, blood and the kidney were collected from each mouse for further analysis. Enzyme-linked immunosorbent assay, H&E, and TUNEL staining, immunohistochemistry, as well as Western blot were carried out to observe the kidney function, renal damage, apoptosis, and inflammation, and to preliminarily uncover the underlying mechanism. Administration with Ro effectively protected against AKI in a dose-dependent manner, as proven by the reduction of serum creatinine, serum neutrophil gelatinase-associated lipocalin, blood urea nitrogen, and serum inflammatory cytokine in AKI models after its administration. Moreover, Ro significantly alleviated morphological damage, kidney cells apoptosis, as well as inflammatory cytokine secretion in renal tissues. Mechanically, phosphorylation of NF-κB and myeloperoxidase activity were observed in renal tissues of AKI models, which suggested NF-κB activation and NETosis occurred in AKI. Notably, Ro treatment could significantly repress the nuclear translocation of NF-κB and the increased myeloperoxidase activity. Ro has a protective potential on ischemia/reperfusion-induced AKI by attenuating apoptosis and inflammation, perhaps by suppressing NF-κB activation and is associated with reduced NETosis.
期刊介绍:
Renal Failure primarily concentrates on acute renal injury and its consequence, but also addresses advances in the fields of chronic renal failure, hypertension, and renal transplantation. Bringing together both clinical and experimental aspects of renal failure, this publication presents timely, practical information on pathology and pathophysiology of acute renal failure; nephrotoxicity of drugs and other substances; prevention, treatment, and therapy of renal failure; renal failure in association with transplantation, hypertension, and diabetes mellitus.