影响酵母mRNA翻译率和半衰期的共同调控因子。

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sudipto Basu, Suman Hait, Sudip Kundu
{"title":"影响酵母mRNA翻译率和半衰期的共同调控因子。","authors":"Sudipto Basu, Suman Hait, Sudip Kundu","doi":"10.1080/07391102.2025.2540787","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive research has highlighted the role of codon composition in regulating co-translational mRNA decay. Translational efficiency is often measured using a codon usage metric like the codon adaptation index (CAI), while mRNA stability is assessed through sequence- and structure-dependent metrics such as codon stabilization coefficient and internal unstructured segments (IUS). However, the question remains whether sequence-dependent translation parameters can influence mRNA stability, or if stability-related parameters can, in turn, regulate mRNA translation and overall co-translational decay. Our approach integrates yeast mRNA sequence, structural, and ribosomal density (RD) data to explore the interconnected regulatory determinants that govern mRNA translation and degradation. Our findings offer new insights into how codon preferences and mRNA structuredness impact these processes, with CAI predominantly shaping translation rates and IUS affecting mRNA decay. Additionally, we observe that the impact of RD on co-translational mRNA decay is context-specific, depending on the dynamics of the primary regulators. These primary regulators are conserved across the genome and throughout evolution, emphasizing their importance in maintaining cellular function. We propose that optimizing both CAI and IUS is essential for improving mRNA-based drug delivery systems. A deeper understanding of the relationship between these factors could lead to more effective mRNA therapeutics.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-15"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shared regulatory factors influencing mRNA translation rate and half-life in yeast.\",\"authors\":\"Sudipto Basu, Suman Hait, Sudip Kundu\",\"doi\":\"10.1080/07391102.2025.2540787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extensive research has highlighted the role of codon composition in regulating co-translational mRNA decay. Translational efficiency is often measured using a codon usage metric like the codon adaptation index (CAI), while mRNA stability is assessed through sequence- and structure-dependent metrics such as codon stabilization coefficient and internal unstructured segments (IUS). However, the question remains whether sequence-dependent translation parameters can influence mRNA stability, or if stability-related parameters can, in turn, regulate mRNA translation and overall co-translational decay. Our approach integrates yeast mRNA sequence, structural, and ribosomal density (RD) data to explore the interconnected regulatory determinants that govern mRNA translation and degradation. Our findings offer new insights into how codon preferences and mRNA structuredness impact these processes, with CAI predominantly shaping translation rates and IUS affecting mRNA decay. Additionally, we observe that the impact of RD on co-translational mRNA decay is context-specific, depending on the dynamics of the primary regulators. These primary regulators are conserved across the genome and throughout evolution, emphasizing their importance in maintaining cellular function. We propose that optimizing both CAI and IUS is essential for improving mRNA-based drug delivery systems. A deeper understanding of the relationship between these factors could lead to more effective mRNA therapeutics.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2540787\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2540787","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

广泛的研究强调了密码子组成在调节共翻译mRNA衰变中的作用。翻译效率通常通过密码子使用指标(如密码子适应指数(CAI))来衡量,而mRNA稳定性则通过序列和结构相关指标(如密码子稳定系数和内部非结构化片段(IUS))来评估。然而,问题仍然是序列依赖的翻译参数是否会影响mRNA的稳定性,或者与稳定性相关的参数是否反过来可以调节mRNA的翻译和整体的共翻译衰减。我们的方法整合了酵母mRNA序列、结构和核糖体密度(RD)数据,以探索控制mRNA翻译和降解的相互关联的调控决定因素。我们的研究结果为密码子偏好和mRNA结构如何影响这些过程提供了新的见解,CAI主要影响翻译速率,IUS影响mRNA衰变。此外,我们观察到RD对共翻译mRNA衰变的影响是特定于环境的,取决于主要调节因子的动态。这些主要调控因子在整个基因组和整个进化过程中都是保守的,强调了它们在维持细胞功能方面的重要性。我们认为优化CAI和IUS对于改进基于mrna的给药系统至关重要。更深入地了解这些因素之间的关系可能会导致更有效的mRNA治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shared regulatory factors influencing mRNA translation rate and half-life in yeast.

Extensive research has highlighted the role of codon composition in regulating co-translational mRNA decay. Translational efficiency is often measured using a codon usage metric like the codon adaptation index (CAI), while mRNA stability is assessed through sequence- and structure-dependent metrics such as codon stabilization coefficient and internal unstructured segments (IUS). However, the question remains whether sequence-dependent translation parameters can influence mRNA stability, or if stability-related parameters can, in turn, regulate mRNA translation and overall co-translational decay. Our approach integrates yeast mRNA sequence, structural, and ribosomal density (RD) data to explore the interconnected regulatory determinants that govern mRNA translation and degradation. Our findings offer new insights into how codon preferences and mRNA structuredness impact these processes, with CAI predominantly shaping translation rates and IUS affecting mRNA decay. Additionally, we observe that the impact of RD on co-translational mRNA decay is context-specific, depending on the dynamics of the primary regulators. These primary regulators are conserved across the genome and throughout evolution, emphasizing their importance in maintaining cellular function. We propose that optimizing both CAI and IUS is essential for improving mRNA-based drug delivery systems. A deeper understanding of the relationship between these factors could lead to more effective mRNA therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信