通过跨代表观遗传学适应和改变表型。

IF 3.2 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-08-13 DOI:10.1080/15592294.2025.2460246
Lon J Van Winkle, Rebecca J Ryznar, Philip M Iannaccone
{"title":"通过跨代表观遗传学适应和改变表型。","authors":"Lon J Van Winkle, Rebecca J Ryznar, Philip M Iannaccone","doi":"10.1080/15592294.2025.2460246","DOIUrl":null,"url":null,"abstract":"<p><p>In this article collection, we describe how noncoding epigenetic changes in DNA are transmitted across multiple generations in eukaryotic organisms including plants and animals. And such environmentally induced biochemical alterations of DNA and histones result in profound changes in gene expression. In plants and invertebrate animals, transgenerational epigenetic inheritance has been well documented, and it continues to be substantiated in humans and other vertebrates. These exciting new discoveries have profound consequences for changing as well as maintaining phenotypes expressed by various life forms and, thus, the changes likely contribute to evolution. And in a more practical way, such studies are very important because of the likely transgenerational inheritance of diseases and disorders, such as type 2 diabetes mellitus and obesity.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2460246"},"PeriodicalIF":3.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptation and changing phenotypes through transgenerational epigenetics.\",\"authors\":\"Lon J Van Winkle, Rebecca J Ryznar, Philip M Iannaccone\",\"doi\":\"10.1080/15592294.2025.2460246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article collection, we describe how noncoding epigenetic changes in DNA are transmitted across multiple generations in eukaryotic organisms including plants and animals. And such environmentally induced biochemical alterations of DNA and histones result in profound changes in gene expression. In plants and invertebrate animals, transgenerational epigenetic inheritance has been well documented, and it continues to be substantiated in humans and other vertebrates. These exciting new discoveries have profound consequences for changing as well as maintaining phenotypes expressed by various life forms and, thus, the changes likely contribute to evolution. And in a more practical way, such studies are very important because of the likely transgenerational inheritance of diseases and disorders, such as type 2 diabetes mellitus and obesity.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":\"20 1\",\"pages\":\"2460246\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2025.2460246\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2460246","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们描述了DNA中的非编码表观遗传变化是如何在真核生物(包括植物和动物)中跨多代传播的。这种环境诱导的DNA和组蛋白的生化改变导致了基因表达的深刻变化。在植物和无脊椎动物中,跨代表观遗传已经得到了很好的记录,并且在人类和其他脊椎动物中继续得到证实。这些令人兴奋的新发现对改变和维持各种生命形式表达的表型具有深远的影响,因此,这些变化可能有助于进化。从更实际的角度来看,这类研究非常重要,因为疾病和失调(如2型糖尿病和肥胖症)可能存在跨代遗传。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptation and changing phenotypes through transgenerational epigenetics.

In this article collection, we describe how noncoding epigenetic changes in DNA are transmitted across multiple generations in eukaryotic organisms including plants and animals. And such environmentally induced biochemical alterations of DNA and histones result in profound changes in gene expression. In plants and invertebrate animals, transgenerational epigenetic inheritance has been well documented, and it continues to be substantiated in humans and other vertebrates. These exciting new discoveries have profound consequences for changing as well as maintaining phenotypes expressed by various life forms and, thus, the changes likely contribute to evolution. And in a more practical way, such studies are very important because of the likely transgenerational inheritance of diseases and disorders, such as type 2 diabetes mellitus and obesity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信