{"title":"在吸烟和面部衰老的共同遗传病因中,与铁中毒相关的IREB2的作用:来自大规模全基因组交叉性状分析的见解","authors":"Xueyao Cai, Weidong Li, Wenjun Shi, Yuchen Cai, Jianda Zhou","doi":"10.1016/j.csbj.2025.07.049","DOIUrl":null,"url":null,"abstract":"<p><p>While the association between smoking and accelerated facial aging is well documented, the specific pathways underlying this association remain poorly understood. To investigate the shared genetic architecture between smoking and facial aging, we performed genetic analyses based on genome-wide association studies (GWAS) data. These analyses included linkage disequilibrium score regression (LDSC), pleiotropic analysis under composite null hypothesis (PLACO), functional mapping and annotation (FUMA), and multi-marker analysis of genomic annotation (MAGMA). To further explore the shared target genes, we utilized expression quantitative trait loci (eQTLs) and mediation Mendelian randomization (MR) analysis, with subsequent validation conducted through <i>in vitro</i> experiments using NIH/3T3 cells. Additionally, we carried out pan-cancer correlation analyses to assess the broader implications of the identified genes in cancer biology. Through pleiotropy and colocalization analyses, IREB2, along with CHRNA5 and AARS1, were identified as having strong evidence linking smoking and facial aging. Functional enrichment, tissue-specific analyses, and gene co-expression network were conducted to further elucidate the functions of these genes. Following eQTLs and mediation analyses, IREB2 was identified as a potential mediator connecting smoking to facial aging. Cellular experiments demonstrated that exposure to cigarette smoke particles induces cellular senescence and downregulates IREB2 expression. The pan-cancer analysis highlighted IREB2's role in shaping the tumor microenvironment and influencing immune processes. This study identifies IREB2 as a critical factor in the molecular mechanisms by which smoking accelerates facial aging, while also contributing to tumor development and immune evasion. Further functional exploration of IREB2 could uncover new therapeutic avenues to address these interconnected conditions.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3433-3442"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of ferroptosis-related IREB2 in the shared genetic etiology between smoking and facial aging: Insights from large-scale genome-wide cross-trait analysis.\",\"authors\":\"Xueyao Cai, Weidong Li, Wenjun Shi, Yuchen Cai, Jianda Zhou\",\"doi\":\"10.1016/j.csbj.2025.07.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While the association between smoking and accelerated facial aging is well documented, the specific pathways underlying this association remain poorly understood. To investigate the shared genetic architecture between smoking and facial aging, we performed genetic analyses based on genome-wide association studies (GWAS) data. These analyses included linkage disequilibrium score regression (LDSC), pleiotropic analysis under composite null hypothesis (PLACO), functional mapping and annotation (FUMA), and multi-marker analysis of genomic annotation (MAGMA). To further explore the shared target genes, we utilized expression quantitative trait loci (eQTLs) and mediation Mendelian randomization (MR) analysis, with subsequent validation conducted through <i>in vitro</i> experiments using NIH/3T3 cells. Additionally, we carried out pan-cancer correlation analyses to assess the broader implications of the identified genes in cancer biology. Through pleiotropy and colocalization analyses, IREB2, along with CHRNA5 and AARS1, were identified as having strong evidence linking smoking and facial aging. Functional enrichment, tissue-specific analyses, and gene co-expression network were conducted to further elucidate the functions of these genes. Following eQTLs and mediation analyses, IREB2 was identified as a potential mediator connecting smoking to facial aging. Cellular experiments demonstrated that exposure to cigarette smoke particles induces cellular senescence and downregulates IREB2 expression. The pan-cancer analysis highlighted IREB2's role in shaping the tumor microenvironment and influencing immune processes. This study identifies IREB2 as a critical factor in the molecular mechanisms by which smoking accelerates facial aging, while also contributing to tumor development and immune evasion. Further functional exploration of IREB2 could uncover new therapeutic avenues to address these interconnected conditions.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3433-3442\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.07.049\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.049","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Role of ferroptosis-related IREB2 in the shared genetic etiology between smoking and facial aging: Insights from large-scale genome-wide cross-trait analysis.
While the association between smoking and accelerated facial aging is well documented, the specific pathways underlying this association remain poorly understood. To investigate the shared genetic architecture between smoking and facial aging, we performed genetic analyses based on genome-wide association studies (GWAS) data. These analyses included linkage disequilibrium score regression (LDSC), pleiotropic analysis under composite null hypothesis (PLACO), functional mapping and annotation (FUMA), and multi-marker analysis of genomic annotation (MAGMA). To further explore the shared target genes, we utilized expression quantitative trait loci (eQTLs) and mediation Mendelian randomization (MR) analysis, with subsequent validation conducted through in vitro experiments using NIH/3T3 cells. Additionally, we carried out pan-cancer correlation analyses to assess the broader implications of the identified genes in cancer biology. Through pleiotropy and colocalization analyses, IREB2, along with CHRNA5 and AARS1, were identified as having strong evidence linking smoking and facial aging. Functional enrichment, tissue-specific analyses, and gene co-expression network were conducted to further elucidate the functions of these genes. Following eQTLs and mediation analyses, IREB2 was identified as a potential mediator connecting smoking to facial aging. Cellular experiments demonstrated that exposure to cigarette smoke particles induces cellular senescence and downregulates IREB2 expression. The pan-cancer analysis highlighted IREB2's role in shaping the tumor microenvironment and influencing immune processes. This study identifies IREB2 as a critical factor in the molecular mechanisms by which smoking accelerates facial aging, while also contributing to tumor development and immune evasion. Further functional exploration of IREB2 could uncover new therapeutic avenues to address these interconnected conditions.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology