{"title":"miR-17-5p抑制bnip3介导的线粒体自噬减轻病理性心肌纤维化。","authors":"Derong Huang, Qing Wen, Yuchen Su, Xiumao Li","doi":"10.4274/balkanmedj.galenos.2025.2025-6-25","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac fibrosis plays a critical role in the progression of chronic cardiovascular conditions, with mitochondrial dysfunction acting as a central mechanism underlying pathological myocardial fibrosis. Increasing research shows that microRNAs may modulate the fibrotic process by regulating mitochondrial function via various pathways.</p><p><strong>Aims: </strong>To examine the involvement of miR-17-5p in modulating mitochondrial autophagy and alleviating pathological cardiac fibrosis.</p><p><strong>Study design: </strong>Combined <i>in vivo</i> and <i>in vitro</i> study.</p><p><strong>Methods: </strong>Expression levels of miR-17-5P and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) were measured in a mouse model of myocardial fibrosis induced by abdominal aortic constriction, as well as in cardiac fibroblasts (CFs) treated with angiotensin II. CFs were transiently transfected with a miR-17-5p mimic, the pcDNA3.1-BNIP3 plasmid, or both. Cell viability was evaluated using the CCK-8 colorimetric assay. The expression of fibrotic and autophagy-related markers was determined via quantitative real-time reverse transcription polymerase chain reaction and immunoblotting. Intracellular levels of reactive oxygen species (ROS) and adenosine triphosphate (ATP) were also assessed.</p><p><strong>Results: </strong>Reduced myocardial miR-17-5p expression was associated with diminished left ventricular systolic function and increased collagen accumulation in heart tissue. <i>In vitro</i>, angiotensin II treatment led to decreased miR-17-5p expression, upregulated BNIP3, and excessive mitochondrial autophagy-evidenced by increased ROS, lowered ATP production, and elevated fibrosis-related markers. Rescue experiments demonstrated that miR-17-5p overexpression directly targeted the 3' untranslated region (3'-UTR) of BNIP3, significantly downregulating its expression, restoring mitochondrial balance, and decreasing collagen production. Conversely, BNIP3 overexpression counteracted the anti-fibrotic and mitochondrial-protective effects of miR-17-5p.</p><p><strong>Conclusion: </strong>The miR-17-5p/BNIP3 signaling pathway modulates mitochondrial autophagy in CFs and plays a key role in fibrotic remodeling. This axis may serve as a promising therapeutic target for reducing cardiac fibrosis and slowing the progression of heart failure.</p>","PeriodicalId":8690,"journal":{"name":"Balkan Medical Journal","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-17-5p Inhibits BNIP3-Mediated Mitochondrial Autophagy to Attenuate Pathological Cardiac Fibrosis.\",\"authors\":\"Derong Huang, Qing Wen, Yuchen Su, Xiumao Li\",\"doi\":\"10.4274/balkanmedj.galenos.2025.2025-6-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiac fibrosis plays a critical role in the progression of chronic cardiovascular conditions, with mitochondrial dysfunction acting as a central mechanism underlying pathological myocardial fibrosis. Increasing research shows that microRNAs may modulate the fibrotic process by regulating mitochondrial function via various pathways.</p><p><strong>Aims: </strong>To examine the involvement of miR-17-5p in modulating mitochondrial autophagy and alleviating pathological cardiac fibrosis.</p><p><strong>Study design: </strong>Combined <i>in vivo</i> and <i>in vitro</i> study.</p><p><strong>Methods: </strong>Expression levels of miR-17-5P and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) were measured in a mouse model of myocardial fibrosis induced by abdominal aortic constriction, as well as in cardiac fibroblasts (CFs) treated with angiotensin II. CFs were transiently transfected with a miR-17-5p mimic, the pcDNA3.1-BNIP3 plasmid, or both. Cell viability was evaluated using the CCK-8 colorimetric assay. The expression of fibrotic and autophagy-related markers was determined via quantitative real-time reverse transcription polymerase chain reaction and immunoblotting. Intracellular levels of reactive oxygen species (ROS) and adenosine triphosphate (ATP) were also assessed.</p><p><strong>Results: </strong>Reduced myocardial miR-17-5p expression was associated with diminished left ventricular systolic function and increased collagen accumulation in heart tissue. <i>In vitro</i>, angiotensin II treatment led to decreased miR-17-5p expression, upregulated BNIP3, and excessive mitochondrial autophagy-evidenced by increased ROS, lowered ATP production, and elevated fibrosis-related markers. Rescue experiments demonstrated that miR-17-5p overexpression directly targeted the 3' untranslated region (3'-UTR) of BNIP3, significantly downregulating its expression, restoring mitochondrial balance, and decreasing collagen production. Conversely, BNIP3 overexpression counteracted the anti-fibrotic and mitochondrial-protective effects of miR-17-5p.</p><p><strong>Conclusion: </strong>The miR-17-5p/BNIP3 signaling pathway modulates mitochondrial autophagy in CFs and plays a key role in fibrotic remodeling. This axis may serve as a promising therapeutic target for reducing cardiac fibrosis and slowing the progression of heart failure.</p>\",\"PeriodicalId\":8690,\"journal\":{\"name\":\"Balkan Medical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Balkan Medical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4274/balkanmedj.galenos.2025.2025-6-25\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balkan Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/balkanmedj.galenos.2025.2025-6-25","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
miR-17-5p Inhibits BNIP3-Mediated Mitochondrial Autophagy to Attenuate Pathological Cardiac Fibrosis.
Background: Cardiac fibrosis plays a critical role in the progression of chronic cardiovascular conditions, with mitochondrial dysfunction acting as a central mechanism underlying pathological myocardial fibrosis. Increasing research shows that microRNAs may modulate the fibrotic process by regulating mitochondrial function via various pathways.
Aims: To examine the involvement of miR-17-5p in modulating mitochondrial autophagy and alleviating pathological cardiac fibrosis.
Study design: Combined in vivo and in vitro study.
Methods: Expression levels of miR-17-5P and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) were measured in a mouse model of myocardial fibrosis induced by abdominal aortic constriction, as well as in cardiac fibroblasts (CFs) treated with angiotensin II. CFs were transiently transfected with a miR-17-5p mimic, the pcDNA3.1-BNIP3 plasmid, or both. Cell viability was evaluated using the CCK-8 colorimetric assay. The expression of fibrotic and autophagy-related markers was determined via quantitative real-time reverse transcription polymerase chain reaction and immunoblotting. Intracellular levels of reactive oxygen species (ROS) and adenosine triphosphate (ATP) were also assessed.
Results: Reduced myocardial miR-17-5p expression was associated with diminished left ventricular systolic function and increased collagen accumulation in heart tissue. In vitro, angiotensin II treatment led to decreased miR-17-5p expression, upregulated BNIP3, and excessive mitochondrial autophagy-evidenced by increased ROS, lowered ATP production, and elevated fibrosis-related markers. Rescue experiments demonstrated that miR-17-5p overexpression directly targeted the 3' untranslated region (3'-UTR) of BNIP3, significantly downregulating its expression, restoring mitochondrial balance, and decreasing collagen production. Conversely, BNIP3 overexpression counteracted the anti-fibrotic and mitochondrial-protective effects of miR-17-5p.
Conclusion: The miR-17-5p/BNIP3 signaling pathway modulates mitochondrial autophagy in CFs and plays a key role in fibrotic remodeling. This axis may serve as a promising therapeutic target for reducing cardiac fibrosis and slowing the progression of heart failure.
期刊介绍:
The Balkan Medical Journal (Balkan Med J) is a peer-reviewed open-access international journal that publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports and clinical images, invited reviews, editorials, letters, comments and letters to the Editor including reports on publication and research ethics. The journal is the official scientific publication of the Trakya University Faculty of Medicine, Edirne, Turkey and is printed six times a year, in January, March, May, July, September and November. The language of the journal is English.
The journal is based on independent and unbiased double-blinded peer-reviewed principles. Only unpublished papers that are not under review for publication elsewhere can be submitted. Balkan Medical Journal does not accept multiple submission and duplicate submission even though the previous one was published in a different language. The authors are responsible for the scientific content of the material to be published. The Balkan Medical Journal reserves the right to request any research materials on which the paper is based.
The Balkan Medical Journal encourages and enables academicians, researchers, specialists and primary care physicians of Balkan countries to publish their valuable research in all branches of medicine. The primary aim of the journal is to publish original articles with high scientific and ethical quality and serve as a good example of medical publications in the Balkans as well as in the World.