Dhamotharan Pattarayan, Yue Wang, Zehua Wang, Sihan Li, Xiaofei Wang, Yuang Chen, Yifei Wang, Chien-Yu Chen, Avishek Bhuniya, Ghanshyam Singh Yadav, Wen Xie, Udai S. Kammula, Song Li, Min Zhang, Da Yang
{"title":"lncRNA EPIC1抑制dsrna诱导的I型IFN信号,是增强TNBC对PD-1抑制反应的治疗靶点","authors":"Dhamotharan Pattarayan, Yue Wang, Zehua Wang, Sihan Li, Xiaofei Wang, Yuang Chen, Yifei Wang, Chien-Yu Chen, Avishek Bhuniya, Ghanshyam Singh Yadav, Wen Xie, Udai S. Kammula, Song Li, Min Zhang, Da Yang","doi":"10.1126/scisignal.adr9131","DOIUrl":null,"url":null,"abstract":"<div >Increases in retroelement-derived double-stranded RNAs (dsRNAs) in various types of cancer cells facilitate the activation of antitumor immune responses. The long noncoding RNA EPIC1 interacts with the histone methyltransferase EZH2 and contributes to tumor immune evasion. Here, we found that EPIC1 in tumor cells suppressed cytoplasmic dsRNA accumulation, type I interferon (IFN) responses, and antitumor immunity. In various cancer cell lines, knockdown of EPIC1 stimulated the production of dsRNA from retroelements and an antiviral-like type I IFN response that activated immune cells. EPIC1 inhibited the expression of LINE, SINE, and LTR retroelements that were also repressed by EZH2, suggesting a potential role for the EPIC1-EZH2 interaction in regulating dsRNA production. In a humanized mouse model, in vivo delivery of EPIC1-targeting oligonucleotides enhanced dsRNA accumulation in breast cancer xenografts, reduced tumor growth, and increased the infiltration of T cells and inflammatory macrophages into tumors. Furthermore, EPIC1 knockdown improved the therapeutic efficacy of the immunotherapy drug pembrolizumab, a PD-1 inhibitor, in the humanized mouse model. Together, our findings establish EPIC1 as a key regulator of dsRNA-mediated type I IFN responses and highlight its potential as a therapeutic target to improve the efficacy of immunotherapy.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 899","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The lncRNA EPIC1 suppresses dsRNA-induced type I IFN signaling and is a therapeutic target to enhance TNBC response to PD-1 inhibition\",\"authors\":\"Dhamotharan Pattarayan, Yue Wang, Zehua Wang, Sihan Li, Xiaofei Wang, Yuang Chen, Yifei Wang, Chien-Yu Chen, Avishek Bhuniya, Ghanshyam Singh Yadav, Wen Xie, Udai S. Kammula, Song Li, Min Zhang, Da Yang\",\"doi\":\"10.1126/scisignal.adr9131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Increases in retroelement-derived double-stranded RNAs (dsRNAs) in various types of cancer cells facilitate the activation of antitumor immune responses. The long noncoding RNA EPIC1 interacts with the histone methyltransferase EZH2 and contributes to tumor immune evasion. Here, we found that EPIC1 in tumor cells suppressed cytoplasmic dsRNA accumulation, type I interferon (IFN) responses, and antitumor immunity. In various cancer cell lines, knockdown of EPIC1 stimulated the production of dsRNA from retroelements and an antiviral-like type I IFN response that activated immune cells. EPIC1 inhibited the expression of LINE, SINE, and LTR retroelements that were also repressed by EZH2, suggesting a potential role for the EPIC1-EZH2 interaction in regulating dsRNA production. In a humanized mouse model, in vivo delivery of EPIC1-targeting oligonucleotides enhanced dsRNA accumulation in breast cancer xenografts, reduced tumor growth, and increased the infiltration of T cells and inflammatory macrophages into tumors. Furthermore, EPIC1 knockdown improved the therapeutic efficacy of the immunotherapy drug pembrolizumab, a PD-1 inhibitor, in the humanized mouse model. Together, our findings establish EPIC1 as a key regulator of dsRNA-mediated type I IFN responses and highlight its potential as a therapeutic target to improve the efficacy of immunotherapy.</div>\",\"PeriodicalId\":21658,\"journal\":{\"name\":\"Science Signaling\",\"volume\":\"18 899\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scisignal.adr9131\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adr9131","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The lncRNA EPIC1 suppresses dsRNA-induced type I IFN signaling and is a therapeutic target to enhance TNBC response to PD-1 inhibition
Increases in retroelement-derived double-stranded RNAs (dsRNAs) in various types of cancer cells facilitate the activation of antitumor immune responses. The long noncoding RNA EPIC1 interacts with the histone methyltransferase EZH2 and contributes to tumor immune evasion. Here, we found that EPIC1 in tumor cells suppressed cytoplasmic dsRNA accumulation, type I interferon (IFN) responses, and antitumor immunity. In various cancer cell lines, knockdown of EPIC1 stimulated the production of dsRNA from retroelements and an antiviral-like type I IFN response that activated immune cells. EPIC1 inhibited the expression of LINE, SINE, and LTR retroelements that were also repressed by EZH2, suggesting a potential role for the EPIC1-EZH2 interaction in regulating dsRNA production. In a humanized mouse model, in vivo delivery of EPIC1-targeting oligonucleotides enhanced dsRNA accumulation in breast cancer xenografts, reduced tumor growth, and increased the infiltration of T cells and inflammatory macrophages into tumors. Furthermore, EPIC1 knockdown improved the therapeutic efficacy of the immunotherapy drug pembrolizumab, a PD-1 inhibitor, in the humanized mouse model. Together, our findings establish EPIC1 as a key regulator of dsRNA-mediated type I IFN responses and highlight its potential as a therapeutic target to improve the efficacy of immunotherapy.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.