{"title":"单细胞RNA和大量RNA测序的整合揭示了胶质母细胞瘤的细胞异质性和鉴定存活相关的调节网络","authors":"Zijun Xu, Bohan Xi, Jiaming Huang, Liqiang Zhang, Sifu Cui, Xianwei Wang, Dong Chen, Shupeng Li","doi":"10.1049/syb2.70025","DOIUrl":null,"url":null,"abstract":"<p>Glioblastoma is a highly aggressive and devastating brain malignancy with dismal prognosis and extremely limited therapeutic options. Identification of prognostic biomarkers and therapeutic targets from multi-omics data is critical for improving patient outcomes. In this study, we investigated the clinical significance of cellular heterogeneity and super-enhancer-driven regulatory networks, which are critically implicated in glioblastoma progression and treatment resistance. We first performed scRNA-seq to dissect tumour microenvironment heterogeneity, identifying 16 distinct cell clusters, including astrocytes, macrophages, and CD8+ T cells. CellChat analysis revealed key intercellular signalling pathways, with astrocytes and macrophages acting as central communication hubs. To integrate bulk RNA sequencing data, we applied the Scissor algorithm to identify survival-associated cell states. By combining single-cell and bulk transcriptomic data, we uncovered 642 survival-related genes, including QKI and RBM47, which robustly predicted patient survival and immunotherapy response. Furthermore, WGCNA analysis identified seven co-expression modules and super enhancer-regulated networks orchestrated by transcription factors (RFX2, RFX4) and hub genes (NEAT1, CFLAR). These networks stratified patients into high- and low-risk groups with significant survival differences. Collectively, our findings elucidate the intricate interplay between cellular heterogeneity and super enhancer-driven gene regulation in glioblastoma, providing a translational framework for targeting oncogenic hubs and modulating microenvironment interactions.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70025","citationCount":"0","resultStr":"{\"title\":\"Integration of Single-Cell RNA and Bulk RNA Sequencing Reveals Cellular Heterogeneity and Identifies Survival-Associated Regulatory Networks in Glioblastoma\",\"authors\":\"Zijun Xu, Bohan Xi, Jiaming Huang, Liqiang Zhang, Sifu Cui, Xianwei Wang, Dong Chen, Shupeng Li\",\"doi\":\"10.1049/syb2.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glioblastoma is a highly aggressive and devastating brain malignancy with dismal prognosis and extremely limited therapeutic options. Identification of prognostic biomarkers and therapeutic targets from multi-omics data is critical for improving patient outcomes. In this study, we investigated the clinical significance of cellular heterogeneity and super-enhancer-driven regulatory networks, which are critically implicated in glioblastoma progression and treatment resistance. We first performed scRNA-seq to dissect tumour microenvironment heterogeneity, identifying 16 distinct cell clusters, including astrocytes, macrophages, and CD8+ T cells. CellChat analysis revealed key intercellular signalling pathways, with astrocytes and macrophages acting as central communication hubs. To integrate bulk RNA sequencing data, we applied the Scissor algorithm to identify survival-associated cell states. By combining single-cell and bulk transcriptomic data, we uncovered 642 survival-related genes, including QKI and RBM47, which robustly predicted patient survival and immunotherapy response. Furthermore, WGCNA analysis identified seven co-expression modules and super enhancer-regulated networks orchestrated by transcription factors (RFX2, RFX4) and hub genes (NEAT1, CFLAR). These networks stratified patients into high- and low-risk groups with significant survival differences. Collectively, our findings elucidate the intricate interplay between cellular heterogeneity and super enhancer-driven gene regulation in glioblastoma, providing a translational framework for targeting oncogenic hubs and modulating microenvironment interactions.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/syb2.70025\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/syb2.70025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Integration of Single-Cell RNA and Bulk RNA Sequencing Reveals Cellular Heterogeneity and Identifies Survival-Associated Regulatory Networks in Glioblastoma
Glioblastoma is a highly aggressive and devastating brain malignancy with dismal prognosis and extremely limited therapeutic options. Identification of prognostic biomarkers and therapeutic targets from multi-omics data is critical for improving patient outcomes. In this study, we investigated the clinical significance of cellular heterogeneity and super-enhancer-driven regulatory networks, which are critically implicated in glioblastoma progression and treatment resistance. We first performed scRNA-seq to dissect tumour microenvironment heterogeneity, identifying 16 distinct cell clusters, including astrocytes, macrophages, and CD8+ T cells. CellChat analysis revealed key intercellular signalling pathways, with astrocytes and macrophages acting as central communication hubs. To integrate bulk RNA sequencing data, we applied the Scissor algorithm to identify survival-associated cell states. By combining single-cell and bulk transcriptomic data, we uncovered 642 survival-related genes, including QKI and RBM47, which robustly predicted patient survival and immunotherapy response. Furthermore, WGCNA analysis identified seven co-expression modules and super enhancer-regulated networks orchestrated by transcription factors (RFX2, RFX4) and hub genes (NEAT1, CFLAR). These networks stratified patients into high- and low-risk groups with significant survival differences. Collectively, our findings elucidate the intricate interplay between cellular heterogeneity and super enhancer-driven gene regulation in glioblastoma, providing a translational framework for targeting oncogenic hubs and modulating microenvironment interactions.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.