基于缺失数据的混合神经网络交通流预测

IF 2.5 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junxi Chen, Zhenlin Wei, Jiaxin Zhang
{"title":"基于缺失数据的混合神经网络交通流预测","authors":"Junxi Chen,&nbsp;Zhenlin Wei,&nbsp;Jiaxin Zhang","doi":"10.1049/itr2.70070","DOIUrl":null,"url":null,"abstract":"<p>On the basis of a generative adversarial network (GAN) and a convolutional neural network (CNN), this work proposes an ER-GAN-CNN to forecast the traffic flow in the presence of missing data by improving GAN. Due to the occurrence of emergencies and the fault of the relevant equipment, the equipment for passenger flow detection may lose some data, which would have negative impacts on passenger flow prediction. In order to cope with such situations, GAN is introduced to make up for the missing data in this paper. On the basis of complete data and CNN, inception blocks are built thereafter to further predict the passenger flow/traffic flow. The accuracy of the prediction of passenger flow is significantly improved with the help of the ER-GAN-CNN, which is able to provide more accurate and rapid traffic guidance for the drivers.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70070","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Neural Network for the Traffic Flow Prediction on the Premise of Missing Data\",\"authors\":\"Junxi Chen,&nbsp;Zhenlin Wei,&nbsp;Jiaxin Zhang\",\"doi\":\"10.1049/itr2.70070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the basis of a generative adversarial network (GAN) and a convolutional neural network (CNN), this work proposes an ER-GAN-CNN to forecast the traffic flow in the presence of missing data by improving GAN. Due to the occurrence of emergencies and the fault of the relevant equipment, the equipment for passenger flow detection may lose some data, which would have negative impacts on passenger flow prediction. In order to cope with such situations, GAN is introduced to make up for the missing data in this paper. On the basis of complete data and CNN, inception blocks are built thereafter to further predict the passenger flow/traffic flow. The accuracy of the prediction of passenger flow is significantly improved with the help of the ER-GAN-CNN, which is able to provide more accurate and rapid traffic guidance for the drivers.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70070\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在生成对抗网络(GAN)和卷积神经网络(CNN)的基础上,本文提出了一种ER-GAN-CNN,通过改进GAN来预测数据缺失情况下的交通流量。由于突发事件的发生和相关设备的故障,客流检测设备可能会丢失一些数据,从而对客流预测产生负面影响。为了应对这种情况,本文引入GAN来弥补数据缺失。在完整数据和CNN的基础上,构建初始块,进一步预测客流/交通流。在ER-GAN-CNN的帮助下,客流预测的准确性显著提高,能够为驾驶员提供更准确、更快速的交通引导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Hybrid Neural Network for the Traffic Flow Prediction on the Premise of Missing Data

A Hybrid Neural Network for the Traffic Flow Prediction on the Premise of Missing Data

A Hybrid Neural Network for the Traffic Flow Prediction on the Premise of Missing Data

A Hybrid Neural Network for the Traffic Flow Prediction on the Premise of Missing Data

On the basis of a generative adversarial network (GAN) and a convolutional neural network (CNN), this work proposes an ER-GAN-CNN to forecast the traffic flow in the presence of missing data by improving GAN. Due to the occurrence of emergencies and the fault of the relevant equipment, the equipment for passenger flow detection may lose some data, which would have negative impacts on passenger flow prediction. In order to cope with such situations, GAN is introduced to make up for the missing data in this paper. On the basis of complete data and CNN, inception blocks are built thereafter to further predict the passenger flow/traffic flow. The accuracy of the prediction of passenger flow is significantly improved with the help of the ER-GAN-CNN, which is able to provide more accurate and rapid traffic guidance for the drivers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信