{"title":"非马尔可夫扩散驱动增长的kpz型方程","authors":"Amir Dembo, Kevin Yang","doi":"10.1007/s00205-025-02124-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study a stochastic <span>pde</span> model for an evolving set <span>\\(\\mathbb {M}({t})\\subseteq {\\mathbb {R}}^{\\textrm{d}+1}\\)</span> that resembles a continuum version of origin-excited or reinforced random walk (Benjamini and Wilson in Electron Commun Probab 8:86–92, 2003; Davis in Probab Theory Relat Fields 84(2):203–229, 1990; Kosygina and Zerner in Bull Inst Math Acad Sinica (N.S.) 8(1):105–157, 2013; Kozma in Oberwolfach Rep 27:1552, 2007; Kozma in: European congress of mathematics. European Mathematical Society, Zurich, 429–443, 2013). We show that long-time fluctuations of an associated height function are given by a regularized Kardar–Parisi–Zhang (<span>kpz</span>)-type <span>pde</span> on a hypersurface in <span>\\({\\mathbb {R}}^{\\textrm{d}+1}\\)</span>, modulated by a Dirichlet-to-Neumann operator. We also show that, for <span>\\(\\textrm{d}+1=2\\)</span>, the regularization in this <span>kpz</span>-type equation can be removed after renormalization. To the best of our knowledge, this gives the first instance of <span>kpz</span>-type behavior in Laplacian growth, which investigated (for somewhat different models) in Parisi and Zheng (Phys Rev Lett 53:1791, 1984), Ramirez and Sidoravicius (J Eur Math Soc 6(3):293–334, 2004).</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"kpz-Type Equation from Growth Driven by a Non-Markovian Diffusion\",\"authors\":\"Amir Dembo, Kevin Yang\",\"doi\":\"10.1007/s00205-025-02124-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a stochastic <span>pde</span> model for an evolving set <span>\\\\(\\\\mathbb {M}({t})\\\\subseteq {\\\\mathbb {R}}^{\\\\textrm{d}+1}\\\\)</span> that resembles a continuum version of origin-excited or reinforced random walk (Benjamini and Wilson in Electron Commun Probab 8:86–92, 2003; Davis in Probab Theory Relat Fields 84(2):203–229, 1990; Kosygina and Zerner in Bull Inst Math Acad Sinica (N.S.) 8(1):105–157, 2013; Kozma in Oberwolfach Rep 27:1552, 2007; Kozma in: European congress of mathematics. European Mathematical Society, Zurich, 429–443, 2013). We show that long-time fluctuations of an associated height function are given by a regularized Kardar–Parisi–Zhang (<span>kpz</span>)-type <span>pde</span> on a hypersurface in <span>\\\\({\\\\mathbb {R}}^{\\\\textrm{d}+1}\\\\)</span>, modulated by a Dirichlet-to-Neumann operator. We also show that, for <span>\\\\(\\\\textrm{d}+1=2\\\\)</span>, the regularization in this <span>kpz</span>-type equation can be removed after renormalization. To the best of our knowledge, this gives the first instance of <span>kpz</span>-type behavior in Laplacian growth, which investigated (for somewhat different models) in Parisi and Zheng (Phys Rev Lett 53:1791, 1984), Ramirez and Sidoravicius (J Eur Math Soc 6(3):293–334, 2004).</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02124-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02124-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一个进化集\(\mathbb {M}({t})\subseteq {\mathbb {R}}^{\textrm{d}+1}\)的随机pde模型,该模型类似于起源激发或增强随机漫步的连续版本(Benjamini和Wilson in Electron common Probab 8:86 - 92,2003;概率理论与应用[j];Kosygina和Zerner .中国数学研究院公牛研究所(自然科学版)8(1):105-157,2013;Kozma in Oberwolfach Rep 27:1552, 2007;科兹马:欧洲数学大会。欧洲数学学会,苏黎世,429-443,2013)。我们证明了一个相关高度函数的长时间波动是由一个正则化的kardar - paris - zhang (kpz)型pde在\({\mathbb {R}}^{\textrm{d}+1}\)超表面上给出的,由一个dirichlet - - - neumann算子调制。我们还证明,对于\(\textrm{d}+1=2\),该kpz型方程中的正则化可以在重整化后去除。据我们所知,这给出了拉普拉斯增长中kpz型行为的第一个实例,它在Parisi和Zheng (Phys Rev Lett 53:17 91,1984), Ramirez和Sidoravicius (J Eur Math Soc 6(3): 293-334, 2004)中进行了研究(对于有些不同的模型)。
kpz-Type Equation from Growth Driven by a Non-Markovian Diffusion
We study a stochastic pde model for an evolving set \(\mathbb {M}({t})\subseteq {\mathbb {R}}^{\textrm{d}+1}\) that resembles a continuum version of origin-excited or reinforced random walk (Benjamini and Wilson in Electron Commun Probab 8:86–92, 2003; Davis in Probab Theory Relat Fields 84(2):203–229, 1990; Kosygina and Zerner in Bull Inst Math Acad Sinica (N.S.) 8(1):105–157, 2013; Kozma in Oberwolfach Rep 27:1552, 2007; Kozma in: European congress of mathematics. European Mathematical Society, Zurich, 429–443, 2013). We show that long-time fluctuations of an associated height function are given by a regularized Kardar–Parisi–Zhang (kpz)-type pde on a hypersurface in \({\mathbb {R}}^{\textrm{d}+1}\), modulated by a Dirichlet-to-Neumann operator. We also show that, for \(\textrm{d}+1=2\), the regularization in this kpz-type equation can be removed after renormalization. To the best of our knowledge, this gives the first instance of kpz-type behavior in Laplacian growth, which investigated (for somewhat different models) in Parisi and Zheng (Phys Rev Lett 53:1791, 1984), Ramirez and Sidoravicius (J Eur Math Soc 6(3):293–334, 2004).
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.