{"title":"与球拟banach函数空间相关的herz型Hardy空间","authors":"Aiting Wang, Wenhua Wang, Mingquan Wei, Baode Li","doi":"10.1007/s13324-025-01117-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a ball quasi-Banach function space, <span>\\(\\alpha \\in \\mathbb {R}\\)</span> and <span>\\(q\\in (0,\\infty )\\)</span>. In this article, the authors first introduce the Herz-type Hardy space <span>\\(\\mathcal {H\\dot{K}}_{X}^{\\alpha ,\\,q}({\\mathbb {R}}^n)\\)</span>, which is defined via the non-tangential grand maximal function. Under some mild assumptions on <i>X</i>, the authors establish the atomic decompositions of <span>\\(\\mathcal {H\\dot{K}}_{X}^{\\alpha ,\\,q}({\\mathbb {R}}^n)\\)</span>. As an application, the authors obtain the boundedness of certain sublinear operators from <span>\\(\\mathcal {H\\dot{K}}_{X}^{\\alpha ,\\,q}({\\mathbb {R}}^n)\\)</span> to <span>\\(\\mathcal {\\dot{K}}_{X}^{\\alpha ,\\,q}({\\mathbb {R}}^n)\\)</span>, where <span>\\(\\mathcal {\\dot{K}}_{X}^{\\alpha ,\\,q}({\\mathbb {R}}^n)\\)</span> denotes the Herz-type space associated with ball quasi-Banach function space <i>X</i>. Finally, the authors apply these results to three concrete function spaces: Herz-type Hardy spaces with variable exponent, mixed Herz-Hardy spaces and Orlicz-Herz Hardy spaces, which belong to the family of Herz-type Hardy spaces associated with ball quasi-Banach function spaces.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Herz-type Hardy spaces associated with ball quasi-Banach function spaces\",\"authors\":\"Aiting Wang, Wenhua Wang, Mingquan Wei, Baode Li\",\"doi\":\"10.1007/s13324-025-01117-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> be a ball quasi-Banach function space, <span>\\\\(\\\\alpha \\\\in \\\\mathbb {R}\\\\)</span> and <span>\\\\(q\\\\in (0,\\\\infty )\\\\)</span>. In this article, the authors first introduce the Herz-type Hardy space <span>\\\\(\\\\mathcal {H\\\\dot{K}}_{X}^{\\\\alpha ,\\\\,q}({\\\\mathbb {R}}^n)\\\\)</span>, which is defined via the non-tangential grand maximal function. Under some mild assumptions on <i>X</i>, the authors establish the atomic decompositions of <span>\\\\(\\\\mathcal {H\\\\dot{K}}_{X}^{\\\\alpha ,\\\\,q}({\\\\mathbb {R}}^n)\\\\)</span>. As an application, the authors obtain the boundedness of certain sublinear operators from <span>\\\\(\\\\mathcal {H\\\\dot{K}}_{X}^{\\\\alpha ,\\\\,q}({\\\\mathbb {R}}^n)\\\\)</span> to <span>\\\\(\\\\mathcal {\\\\dot{K}}_{X}^{\\\\alpha ,\\\\,q}({\\\\mathbb {R}}^n)\\\\)</span>, where <span>\\\\(\\\\mathcal {\\\\dot{K}}_{X}^{\\\\alpha ,\\\\,q}({\\\\mathbb {R}}^n)\\\\)</span> denotes the Herz-type space associated with ball quasi-Banach function space <i>X</i>. Finally, the authors apply these results to three concrete function spaces: Herz-type Hardy spaces with variable exponent, mixed Herz-Hardy spaces and Orlicz-Herz Hardy spaces, which belong to the family of Herz-type Hardy spaces associated with ball quasi-Banach function spaces.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01117-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01117-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Herz-type Hardy spaces associated with ball quasi-Banach function spaces
Let X be a ball quasi-Banach function space, \(\alpha \in \mathbb {R}\) and \(q\in (0,\infty )\). In this article, the authors first introduce the Herz-type Hardy space \(\mathcal {H\dot{K}}_{X}^{\alpha ,\,q}({\mathbb {R}}^n)\), which is defined via the non-tangential grand maximal function. Under some mild assumptions on X, the authors establish the atomic decompositions of \(\mathcal {H\dot{K}}_{X}^{\alpha ,\,q}({\mathbb {R}}^n)\). As an application, the authors obtain the boundedness of certain sublinear operators from \(\mathcal {H\dot{K}}_{X}^{\alpha ,\,q}({\mathbb {R}}^n)\) to \(\mathcal {\dot{K}}_{X}^{\alpha ,\,q}({\mathbb {R}}^n)\), where \(\mathcal {\dot{K}}_{X}^{\alpha ,\,q}({\mathbb {R}}^n)\) denotes the Herz-type space associated with ball quasi-Banach function space X. Finally, the authors apply these results to three concrete function spaces: Herz-type Hardy spaces with variable exponent, mixed Herz-Hardy spaces and Orlicz-Herz Hardy spaces, which belong to the family of Herz-type Hardy spaces associated with ball quasi-Banach function spaces.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.