Christoffer Löffler, Wei-Cheng Lai, Dario Zanca, Lukas Schmidt, Björn M. Eskofier, Christopher Mutschler
{"title":"不要误解我的意思:如何将深度视觉解释应用于时间序列","authors":"Christoffer Löffler, Wei-Cheng Lai, Dario Zanca, Lukas Schmidt, Björn M. Eskofier, Christopher Mutschler","doi":"10.1007/s10489-025-06798-3","DOIUrl":null,"url":null,"abstract":"<div><p>The correct interpretation of convolutional models is a hard problem for time series data. While saliency methods promise visual validation of predictions for image and language processing, they fall short when applied to time series. These tend to be less intuitive and represent highly diverse data, such as the tool-use time series dataset. Furthermore, saliency methods often generate varied, conflicting explanations, complicating the reliability of these methods. Consequently, a rigorous objective assessment is necessary to establish trust in them. This paper investigates saliency methods on time series data to formulate recommendations for interpreting convolutional models and implements them on the tool-use time series problem. To achieve this, we first employ nine gradient-, propagation-, or perturbation-based post-hoc saliency methods across six varied and complex real-world datasets. Next, we evaluate these methods using five independent metrics to generate recommendations. Subsequently, we implement a case study focusing on tool-use time series using convolutional classification models. Our results validate our recommendations that indicate that none of the saliency methods consistently outperforms others on all metrics, while some are sometimes ahead. Our insights and step-by-step guidelines allow experts to choose suitable saliency methods for a given model and dataset.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 13","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Don’t get me wrong: How to apply deep visual interpretations to time series\",\"authors\":\"Christoffer Löffler, Wei-Cheng Lai, Dario Zanca, Lukas Schmidt, Björn M. Eskofier, Christopher Mutschler\",\"doi\":\"10.1007/s10489-025-06798-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The correct interpretation of convolutional models is a hard problem for time series data. While saliency methods promise visual validation of predictions for image and language processing, they fall short when applied to time series. These tend to be less intuitive and represent highly diverse data, such as the tool-use time series dataset. Furthermore, saliency methods often generate varied, conflicting explanations, complicating the reliability of these methods. Consequently, a rigorous objective assessment is necessary to establish trust in them. This paper investigates saliency methods on time series data to formulate recommendations for interpreting convolutional models and implements them on the tool-use time series problem. To achieve this, we first employ nine gradient-, propagation-, or perturbation-based post-hoc saliency methods across six varied and complex real-world datasets. Next, we evaluate these methods using five independent metrics to generate recommendations. Subsequently, we implement a case study focusing on tool-use time series using convolutional classification models. Our results validate our recommendations that indicate that none of the saliency methods consistently outperforms others on all metrics, while some are sometimes ahead. Our insights and step-by-step guidelines allow experts to choose suitable saliency methods for a given model and dataset.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 13\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06798-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06798-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Don’t get me wrong: How to apply deep visual interpretations to time series
The correct interpretation of convolutional models is a hard problem for time series data. While saliency methods promise visual validation of predictions for image and language processing, they fall short when applied to time series. These tend to be less intuitive and represent highly diverse data, such as the tool-use time series dataset. Furthermore, saliency methods often generate varied, conflicting explanations, complicating the reliability of these methods. Consequently, a rigorous objective assessment is necessary to establish trust in them. This paper investigates saliency methods on time series data to formulate recommendations for interpreting convolutional models and implements them on the tool-use time series problem. To achieve this, we first employ nine gradient-, propagation-, or perturbation-based post-hoc saliency methods across six varied and complex real-world datasets. Next, we evaluate these methods using five independent metrics to generate recommendations. Subsequently, we implement a case study focusing on tool-use time series using convolutional classification models. Our results validate our recommendations that indicate that none of the saliency methods consistently outperforms others on all metrics, while some are sometimes ahead. Our insights and step-by-step guidelines allow experts to choose suitable saliency methods for a given model and dataset.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.