不要误解我的意思:如何将深度视觉解释应用于时间序列

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Christoffer Löffler, Wei-Cheng Lai, Dario Zanca, Lukas Schmidt, Björn M. Eskofier, Christopher Mutschler
{"title":"不要误解我的意思:如何将深度视觉解释应用于时间序列","authors":"Christoffer Löffler,&nbsp;Wei-Cheng Lai,&nbsp;Dario Zanca,&nbsp;Lukas Schmidt,&nbsp;Björn M. Eskofier,&nbsp;Christopher Mutschler","doi":"10.1007/s10489-025-06798-3","DOIUrl":null,"url":null,"abstract":"<div><p>The correct interpretation of convolutional models is a hard problem for time series data. While saliency methods promise visual validation of predictions for image and language processing, they fall short when applied to time series. These tend to be less intuitive and represent highly diverse data, such as the tool-use time series dataset. Furthermore, saliency methods often generate varied, conflicting explanations, complicating the reliability of these methods. Consequently, a rigorous objective assessment is necessary to establish trust in them. This paper investigates saliency methods on time series data to formulate recommendations for interpreting convolutional models and implements them on the tool-use time series problem. To achieve this, we first employ nine gradient-, propagation-, or perturbation-based post-hoc saliency methods across six varied and complex real-world datasets. Next, we evaluate these methods using five independent metrics to generate recommendations. Subsequently, we implement a case study focusing on tool-use time series using convolutional classification models. Our results validate our recommendations that indicate that none of the saliency methods consistently outperforms others on all metrics, while some are sometimes ahead. Our insights and step-by-step guidelines allow experts to choose suitable saliency methods for a given model and dataset.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 13","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Don’t get me wrong: How to apply deep visual interpretations to time series\",\"authors\":\"Christoffer Löffler,&nbsp;Wei-Cheng Lai,&nbsp;Dario Zanca,&nbsp;Lukas Schmidt,&nbsp;Björn M. Eskofier,&nbsp;Christopher Mutschler\",\"doi\":\"10.1007/s10489-025-06798-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The correct interpretation of convolutional models is a hard problem for time series data. While saliency methods promise visual validation of predictions for image and language processing, they fall short when applied to time series. These tend to be less intuitive and represent highly diverse data, such as the tool-use time series dataset. Furthermore, saliency methods often generate varied, conflicting explanations, complicating the reliability of these methods. Consequently, a rigorous objective assessment is necessary to establish trust in them. This paper investigates saliency methods on time series data to formulate recommendations for interpreting convolutional models and implements them on the tool-use time series problem. To achieve this, we first employ nine gradient-, propagation-, or perturbation-based post-hoc saliency methods across six varied and complex real-world datasets. Next, we evaluate these methods using five independent metrics to generate recommendations. Subsequently, we implement a case study focusing on tool-use time series using convolutional classification models. Our results validate our recommendations that indicate that none of the saliency methods consistently outperforms others on all metrics, while some are sometimes ahead. Our insights and step-by-step guidelines allow experts to choose suitable saliency methods for a given model and dataset.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 13\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06798-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06798-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对于时间序列数据,卷积模型的正确解释是一个难题。虽然显著性方法有望对图像和语言处理的预测进行视觉验证,但它们在应用于时间序列时却存在不足。这些方法往往不太直观,并且表示高度多样化的数据,例如使用工具的时间序列数据集。此外,显著性方法经常产生不同的、相互矛盾的解释,使这些方法的可靠性复杂化。因此,有必要进行严格的客观评估,以建立对它们的信任。本文研究了时间序列数据的显著性方法,以制定解释卷积模型的建议,并在工具使用时间序列问题上实现它们。为了实现这一目标,我们首先在六个不同和复杂的现实世界数据集上采用了九种基于梯度、传播或扰动的事后显著性方法。接下来,我们使用五个独立的指标来评估这些方法以生成建议。随后,我们使用卷积分类模型实现了一个专注于工具使用时间序列的案例研究。我们的结果验证了我们的建议,即没有一种显著性方法在所有指标上都始终优于其他方法,而有些方法有时会领先。我们的见解和一步一步的指导方针允许专家为给定的模型和数据集选择合适的显著性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Don’t get me wrong: How to apply deep visual interpretations to time series

The correct interpretation of convolutional models is a hard problem for time series data. While saliency methods promise visual validation of predictions for image and language processing, they fall short when applied to time series. These tend to be less intuitive and represent highly diverse data, such as the tool-use time series dataset. Furthermore, saliency methods often generate varied, conflicting explanations, complicating the reliability of these methods. Consequently, a rigorous objective assessment is necessary to establish trust in them. This paper investigates saliency methods on time series data to formulate recommendations for interpreting convolutional models and implements them on the tool-use time series problem. To achieve this, we first employ nine gradient-, propagation-, or perturbation-based post-hoc saliency methods across six varied and complex real-world datasets. Next, we evaluate these methods using five independent metrics to generate recommendations. Subsequently, we implement a case study focusing on tool-use time series using convolutional classification models. Our results validate our recommendations that indicate that none of the saliency methods consistently outperforms others on all metrics, while some are sometimes ahead. Our insights and step-by-step guidelines allow experts to choose suitable saliency methods for a given model and dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信