三元LiAlTe2的电子、弹性和光学性质的第一性原理研究

IF 2.5 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gui-Zhu Ran, Mi Zhong, Zheng-Tang Liu, Qi-Jun Liu
{"title":"三元LiAlTe2的电子、弹性和光学性质的第一性原理研究","authors":"Gui-Zhu Ran,&nbsp;Mi Zhong,&nbsp;Zheng-Tang Liu,&nbsp;Qi-Jun Liu","doi":"10.1007/s00894-025-06467-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Context and results</h3><p>This study utilizes a first-principles computational approach to examine the elastic, electronic, and optical properties of LiAlTe<sub>2</sub>, a ternary A<sup>I</sup>B<sup>III</sup>C<sub>2</sub><sup>VI</sup> compound. The findings, in close agreement with experimental data, demonstrate the material’s strong potential as a p-type transparent conductive material. LiAlTe<sub>2</sub> crystallizes in a tetragonal structure, featuring a tetrahedral arrangement that forms a stable three-dimensional framework. The material’s elastic properties reveal a favorable balance between ductility and rigidity, with notable stretchability and resistance to fracture. With a direct bandgap of 2.42 eV, LiAlTe<sub>2</sub> exhibits a low absorption coefficient in the visible light range (&lt; 2 × 10<sup>4</sup> cm<sup>−1</sup>), indicating high transparency. Additionally, the reduced hole effective mass of 0.82 m<sub>0</sub> at the valence band maximum enhances its electronic transport properties, making it an ideal candidate for applications that require high carrier mobility and transparent conductivity.</p><h3>Computational methods</h3><p>The calculations were carried out using density functional theory (DFT) within the Cambridge Sequential Total Energy Package (CASTEP). This study employs both GGA-PBE and PBE0 methods to analyze the material properties. </p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles study of the electronic, elastic, and optical properties of ternary LiAlTe2\",\"authors\":\"Gui-Zhu Ran,&nbsp;Mi Zhong,&nbsp;Zheng-Tang Liu,&nbsp;Qi-Jun Liu\",\"doi\":\"10.1007/s00894-025-06467-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context and results</h3><p>This study utilizes a first-principles computational approach to examine the elastic, electronic, and optical properties of LiAlTe<sub>2</sub>, a ternary A<sup>I</sup>B<sup>III</sup>C<sub>2</sub><sup>VI</sup> compound. The findings, in close agreement with experimental data, demonstrate the material’s strong potential as a p-type transparent conductive material. LiAlTe<sub>2</sub> crystallizes in a tetragonal structure, featuring a tetrahedral arrangement that forms a stable three-dimensional framework. The material’s elastic properties reveal a favorable balance between ductility and rigidity, with notable stretchability and resistance to fracture. With a direct bandgap of 2.42 eV, LiAlTe<sub>2</sub> exhibits a low absorption coefficient in the visible light range (&lt; 2 × 10<sup>4</sup> cm<sup>−1</sup>), indicating high transparency. Additionally, the reduced hole effective mass of 0.82 m<sub>0</sub> at the valence band maximum enhances its electronic transport properties, making it an ideal candidate for applications that require high carrier mobility and transparent conductivity.</p><h3>Computational methods</h3><p>The calculations were carried out using density functional theory (DFT) within the Cambridge Sequential Total Energy Package (CASTEP). This study employs both GGA-PBE and PBE0 methods to analyze the material properties. </p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-025-06467-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06467-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用第一性原理计算方法来研究LiAlTe2(一种三元AIBIIIC2VI化合物)的弹性、电子和光学性质。研究结果与实验数据一致,证明了该材料作为p型透明导电材料的强大潜力。LiAlTe2结晶为四边形结构,具有四面体排列,形成稳定的三维框架。材料的弹性性能在延性和刚性之间表现出良好的平衡,具有显著的拉伸性和抗断裂性。LiAlTe2的直接带隙为2.42 eV,在可见光范围内具有较低的吸收系数(< 2 × 104 cm−1),具有较高的透明度。此外,在价带最大值处降低了0.82 m0的空穴有效质量,增强了其电子输运性能,使其成为需要高载流子迁移率和透明电导率的应用的理想候选者。计算方法使用剑桥顺序总能量包(CASTEP)中的密度泛函理论(DFT)进行计算。本研究采用GGA-PBE和PBE0两种方法对材料性能进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-principles study of the electronic, elastic, and optical properties of ternary LiAlTe2

Context and results

This study utilizes a first-principles computational approach to examine the elastic, electronic, and optical properties of LiAlTe2, a ternary AIBIIIC2VI compound. The findings, in close agreement with experimental data, demonstrate the material’s strong potential as a p-type transparent conductive material. LiAlTe2 crystallizes in a tetragonal structure, featuring a tetrahedral arrangement that forms a stable three-dimensional framework. The material’s elastic properties reveal a favorable balance between ductility and rigidity, with notable stretchability and resistance to fracture. With a direct bandgap of 2.42 eV, LiAlTe2 exhibits a low absorption coefficient in the visible light range (< 2 × 104 cm−1), indicating high transparency. Additionally, the reduced hole effective mass of 0.82 m0 at the valence band maximum enhances its electronic transport properties, making it an ideal candidate for applications that require high carrier mobility and transparent conductivity.

Computational methods

The calculations were carried out using density functional theory (DFT) within the Cambridge Sequential Total Energy Package (CASTEP). This study employs both GGA-PBE and PBE0 methods to analyze the material properties. 

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信