二次耦合加速探测器的信息行为

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
P. H. M. Barros, P. R. S. Carvalho, H. A. S. Costa
{"title":"二次耦合加速探测器的信息行为","authors":"P. H. M. Barros,&nbsp;P. R. S. Carvalho,&nbsp;H. A. S. Costa","doi":"10.1140/epjc/s10052-025-14601-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose to investigate the information behavior of quantum systems through accelerated detectors quadratically coupled with a massless scalar field. In addition, we made detailed comparisons with the case of linear coupling. The perturbative method was used to evolve the density matrix that describes the interaction of the detector-field system during a finite time. The systems studied were: accelerated single-qubit, quantum interferometric circuit, and the which-path distinguishability circuit. The results on the probability transition rates show that quadratic coupling amplifies the Unruh effect. This is due to the modification of the interaction structure, allowing the simultaneous absorption of multiple quanta. Our findings showed that the information is degraded more quickly in the case of quadratic coupling, when compared to the linear case. Furthermore, this change is mainly given by the coupling constant and by an additional factor that arises in the case of quadratic coupling. Therefore, these results indicate that the nature of the coupling between the detector and the field plays a fundamental role in the behavior of quantum information in high acceleration regimes.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 8","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14601-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On the information behavior from quadratically coupled accelerated detectors\",\"authors\":\"P. H. M. Barros,&nbsp;P. R. S. Carvalho,&nbsp;H. A. S. Costa\",\"doi\":\"10.1140/epjc/s10052-025-14601-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we propose to investigate the information behavior of quantum systems through accelerated detectors quadratically coupled with a massless scalar field. In addition, we made detailed comparisons with the case of linear coupling. The perturbative method was used to evolve the density matrix that describes the interaction of the detector-field system during a finite time. The systems studied were: accelerated single-qubit, quantum interferometric circuit, and the which-path distinguishability circuit. The results on the probability transition rates show that quadratic coupling amplifies the Unruh effect. This is due to the modification of the interaction structure, allowing the simultaneous absorption of multiple quanta. Our findings showed that the information is degraded more quickly in the case of quadratic coupling, when compared to the linear case. Furthermore, this change is mainly given by the coupling constant and by an additional factor that arises in the case of quadratic coupling. Therefore, these results indicate that the nature of the coupling between the detector and the field plays a fundamental role in the behavior of quantum information in high acceleration regimes.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 8\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14601-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14601-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14601-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们建议通过加速探测器与无质量标量场的二次耦合来研究量子系统的信息行为。此外,我们还与线性耦合的情况进行了详细的比较。采用微扰方法推导了描述探测场系统在有限时间内相互作用的密度矩阵。研究的系统包括:加速单量子比特、量子干涉电路和路径可分辨电路。对概率跃迁率的研究结果表明,二次耦合放大了Unruh效应。这是由于相互作用结构的修改,允许同时吸收多个量子。我们的研究结果表明,在二次耦合的情况下,与线性情况相比,信息退化得更快。此外,这种变化主要是由耦合常数和二次耦合情况下出现的附加因素给出的。因此,这些结果表明,探测器和场之间耦合的性质在高加速状态下的量子信息行为中起着基本作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the information behavior from quadratically coupled accelerated detectors

In this work, we propose to investigate the information behavior of quantum systems through accelerated detectors quadratically coupled with a massless scalar field. In addition, we made detailed comparisons with the case of linear coupling. The perturbative method was used to evolve the density matrix that describes the interaction of the detector-field system during a finite time. The systems studied were: accelerated single-qubit, quantum interferometric circuit, and the which-path distinguishability circuit. The results on the probability transition rates show that quadratic coupling amplifies the Unruh effect. This is due to the modification of the interaction structure, allowing the simultaneous absorption of multiple quanta. Our findings showed that the information is degraded more quickly in the case of quadratic coupling, when compared to the linear case. Furthermore, this change is mainly given by the coupling constant and by an additional factor that arises in the case of quadratic coupling. Therefore, these results indicate that the nature of the coupling between the detector and the field plays a fundamental role in the behavior of quantum information in high acceleration regimes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信