关于(q, h)-微分:除差、商规则及其应用

IF 1.6 3区 数学 Q1 MATHEMATICS
Dragan S. Rakić
{"title":"关于(q, h)-微分:除差、商规则及其应用","authors":"Dragan S. Rakić","doi":"10.1007/s13324-025-01116-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a class of time scales for which the forward jump function is given by <span>\\(\\sigma (t)=qt+h\\)</span>, where <i>q</i>, and <i>h</i> are constants. This framework allows us to treat the standard, <i>h</i>-, <i>q</i>-, and (<i>q</i>, <i>h</i>)-derivatives simultaneously as special cases of the delta derivative. We establish a key connection between the <i>n</i>th delta derivative and specific <i>n</i>th divided difference, which serves as the foundation for generalizing several classical results from <i>q</i>-calculus to the broader context of (<i>q</i>, <i>h</i>)-calculus. In the second part of the paper, we present explicit formulas for the <i>n</i>th delta derivative of a quotient of two functions, extending familiar results from classical calculus. As an application, we use the obtained results to study the (<i>q</i>, <i>h</i>)-analogs of the power and exponential functions, yielding explicit expressions for the <i>n</i>th derivatives of their reciprocals and leading to a novel <i>q</i>-binomial identity.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On (q, h)-differentiation: divided differences, quotient rules, and applications\",\"authors\":\"Dragan S. Rakić\",\"doi\":\"10.1007/s13324-025-01116-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates a class of time scales for which the forward jump function is given by <span>\\\\(\\\\sigma (t)=qt+h\\\\)</span>, where <i>q</i>, and <i>h</i> are constants. This framework allows us to treat the standard, <i>h</i>-, <i>q</i>-, and (<i>q</i>, <i>h</i>)-derivatives simultaneously as special cases of the delta derivative. We establish a key connection between the <i>n</i>th delta derivative and specific <i>n</i>th divided difference, which serves as the foundation for generalizing several classical results from <i>q</i>-calculus to the broader context of (<i>q</i>, <i>h</i>)-calculus. In the second part of the paper, we present explicit formulas for the <i>n</i>th delta derivative of a quotient of two functions, extending familiar results from classical calculus. As an application, we use the obtained results to study the (<i>q</i>, <i>h</i>)-analogs of the power and exponential functions, yielding explicit expressions for the <i>n</i>th derivatives of their reciprocals and leading to a novel <i>q</i>-binomial identity.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01116-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01116-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类前跃函数由\(\sigma (t)=qt+h\)给出的时间尺度,其中q和h为常数。这个框架允许我们同时将标准h-, q-和(q, h)-导数作为导数的特殊情况来处理。我们建立了第n阶导数与特定的n次差之间的关键联系,这是将q-微积分的几个经典结果推广到更广泛的(q, h)-微积分的基础。在本文的第二部分,我们给出了两个函数的商的第n阶导数的显式公式,推广了经典微积分中常见的结果。作为一个应用,我们利用得到的结果研究了幂函数和指数函数的(q, h)-类似函数,得到了它们的倒数的n阶导数的显式表达式,并得到了一个新的q-二项恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On (q, h)-differentiation: divided differences, quotient rules, and applications

This paper investigates a class of time scales for which the forward jump function is given by \(\sigma (t)=qt+h\), where q, and h are constants. This framework allows us to treat the standard, h-, q-, and (qh)-derivatives simultaneously as special cases of the delta derivative. We establish a key connection between the nth delta derivative and specific nth divided difference, which serves as the foundation for generalizing several classical results from q-calculus to the broader context of (qh)-calculus. In the second part of the paper, we present explicit formulas for the nth delta derivative of a quotient of two functions, extending familiar results from classical calculus. As an application, we use the obtained results to study the (qh)-analogs of the power and exponential functions, yielding explicit expressions for the nth derivatives of their reciprocals and leading to a novel q-binomial identity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信