{"title":"新型4-(2-甲氧基-5-((4-morpholinophenyl)亚氨基)甲基)苯氧基)功能化酞菁的合成、表征、电化学和电聚合性能","authors":"Duygu Akyüz , Ümit Demirbaş , Hayat Taşyürek , Halit Kantekin","doi":"10.1016/j.jorganchem.2025.123809","DOIUrl":null,"url":null,"abstract":"<div><div>Novel metallophthalocyanines (<strong>6–8</strong>) bearing 4-(2-methoxy-5-(((4-morpholinophenyl)imino)methyl)phenoxy) substituents were synthesized and thoroughly characterized. The structures of the key intermediates and final phthalocyanine complexes were confirmed by FT-IR, <sup>1</sup>H NMR, and mass spectrometry. The electrochemical properties of the newly synthesized nickel(II) (<strong>6</strong>), cobalt(II) (<strong>7</strong>), and copper(II) (<strong>8</strong>) phthalocyanines were investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV). Among them, the cobalt(II) phthalocyanine (<strong>7</strong>) exhibited a distinct metal-centered redox process due to the redox-active nature of its central metal ion, while the nickel(II) (<strong>6</strong>) and copper(II) (<strong>8</strong>) analogs displayed relatively limited electrochemical activity. All three complexes showed nearly reversible redox behavior, as evidenced by scan rate-dependent peak current changes. Electropolymerization studies revealed that increasing polymer film thickness led to reduced conductivity and diminished peak currents, accompanied by shifts in oxidation potentials. These findings underscore the significant role of the central metal ion and polymer film characteristics in modulating electrochemical performance. The synthesized phthalocyanines (<strong>6–8</strong>) also demonstrated promising potential for modifying electrode surfaces, offering improved electrical conductivity, enhanced stability, corrosion resistance, and suitability for sensor and protective coating applications.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1040 ","pages":"Article 123809"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Characterization, Electrochemical and Electropolymerization Properties of Novel Phthalocyanines Functionalized with 4-(2-methoxy-5-(((4-morpholinophenyl)imino)methyl)phenoxy) Units\",\"authors\":\"Duygu Akyüz , Ümit Demirbaş , Hayat Taşyürek , Halit Kantekin\",\"doi\":\"10.1016/j.jorganchem.2025.123809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Novel metallophthalocyanines (<strong>6–8</strong>) bearing 4-(2-methoxy-5-(((4-morpholinophenyl)imino)methyl)phenoxy) substituents were synthesized and thoroughly characterized. The structures of the key intermediates and final phthalocyanine complexes were confirmed by FT-IR, <sup>1</sup>H NMR, and mass spectrometry. The electrochemical properties of the newly synthesized nickel(II) (<strong>6</strong>), cobalt(II) (<strong>7</strong>), and copper(II) (<strong>8</strong>) phthalocyanines were investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV). Among them, the cobalt(II) phthalocyanine (<strong>7</strong>) exhibited a distinct metal-centered redox process due to the redox-active nature of its central metal ion, while the nickel(II) (<strong>6</strong>) and copper(II) (<strong>8</strong>) analogs displayed relatively limited electrochemical activity. All three complexes showed nearly reversible redox behavior, as evidenced by scan rate-dependent peak current changes. Electropolymerization studies revealed that increasing polymer film thickness led to reduced conductivity and diminished peak currents, accompanied by shifts in oxidation potentials. These findings underscore the significant role of the central metal ion and polymer film characteristics in modulating electrochemical performance. The synthesized phthalocyanines (<strong>6–8</strong>) also demonstrated promising potential for modifying electrode surfaces, offering improved electrical conductivity, enhanced stability, corrosion resistance, and suitability for sensor and protective coating applications.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1040 \",\"pages\":\"Article 123809\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X2500302X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X2500302X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthesis, Characterization, Electrochemical and Electropolymerization Properties of Novel Phthalocyanines Functionalized with 4-(2-methoxy-5-(((4-morpholinophenyl)imino)methyl)phenoxy) Units
Novel metallophthalocyanines (6–8) bearing 4-(2-methoxy-5-(((4-morpholinophenyl)imino)methyl)phenoxy) substituents were synthesized and thoroughly characterized. The structures of the key intermediates and final phthalocyanine complexes were confirmed by FT-IR, 1H NMR, and mass spectrometry. The electrochemical properties of the newly synthesized nickel(II) (6), cobalt(II) (7), and copper(II) (8) phthalocyanines were investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV). Among them, the cobalt(II) phthalocyanine (7) exhibited a distinct metal-centered redox process due to the redox-active nature of its central metal ion, while the nickel(II) (6) and copper(II) (8) analogs displayed relatively limited electrochemical activity. All three complexes showed nearly reversible redox behavior, as evidenced by scan rate-dependent peak current changes. Electropolymerization studies revealed that increasing polymer film thickness led to reduced conductivity and diminished peak currents, accompanied by shifts in oxidation potentials. These findings underscore the significant role of the central metal ion and polymer film characteristics in modulating electrochemical performance. The synthesized phthalocyanines (6–8) also demonstrated promising potential for modifying electrode surfaces, offering improved electrical conductivity, enhanced stability, corrosion resistance, and suitability for sensor and protective coating applications.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.