poincar - lindstedt级数解译的时间周期解的复杂结构:S3上的三次共形波动方程

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Filip Ficek , Maciej Maliborski
{"title":"poincar<s:1> - lindstedt级数解译的时间周期解的复杂结构:S3上的三次共形波动方程","authors":"Filip Ficek ,&nbsp;Maciej Maliborski","doi":"10.1016/j.physd.2025.134864","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the rich structure of spherically symmetric time-periodic solutions of the cubic conformal wave equation on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We discover that the families of solutions bifurcating from the eigenmodes of the linearized equation form patterns similar to the ones observed for the cubic wave equation. Alongside the Galerkin approaches, we study them using the new method based on the Padé approximants. To do so, we provide a rigorous perturbative construction of solutions. Due to the conformal symmetry, the solutions presented in this work serve as examples of large time-periodic solutions of the conformally coupled scalar field on the anti-de Sitter background.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134864"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex structure of time-periodic solutions decoded in Poincaré–Lindstedt series: The cubic conformal wave equation on S3\",\"authors\":\"Filip Ficek ,&nbsp;Maciej Maliborski\",\"doi\":\"10.1016/j.physd.2025.134864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work explores the rich structure of spherically symmetric time-periodic solutions of the cubic conformal wave equation on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We discover that the families of solutions bifurcating from the eigenmodes of the linearized equation form patterns similar to the ones observed for the cubic wave equation. Alongside the Galerkin approaches, we study them using the new method based on the Padé approximants. To do so, we provide a rigorous perturbative construction of solutions. Due to the conformal symmetry, the solutions presented in this work serve as examples of large time-periodic solutions of the conformally coupled scalar field on the anti-de Sitter background.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134864\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003410\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003410","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了S3上三次共形波动方程球对称时周期解的丰富结构。我们发现从线性化方程的特征模态分叉的解族形成了类似于三次波动方程所观察到的模式。除了Galerkin方法外,我们还使用基于pad近似的新方法来研究它们。为此,我们提供了解的严格摄动构造。由于共形对称性,本文给出的解可以作为反德西特背景下共形耦合标量场大时间周期解的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex structure of time-periodic solutions decoded in Poincaré–Lindstedt series: The cubic conformal wave equation on S3
This work explores the rich structure of spherically symmetric time-periodic solutions of the cubic conformal wave equation on S3. We discover that the families of solutions bifurcating from the eigenmodes of the linearized equation form patterns similar to the ones observed for the cubic wave equation. Alongside the Galerkin approaches, we study them using the new method based on the Padé approximants. To do so, we provide a rigorous perturbative construction of solutions. Due to the conformal symmetry, the solutions presented in this work serve as examples of large time-periodic solutions of the conformally coupled scalar field on the anti-de Sitter background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信