Adwin Jose P , Revathi N , Dhaveethu Raja J , Murugesan Sankarganesh , Sivaranjana P
{"title":"嵌入功能化石墨烯纳米复合材料的氧化铜纳米颗粒增强亚甲基蓝降解","authors":"Adwin Jose P , Revathi N , Dhaveethu Raja J , Murugesan Sankarganesh , Sivaranjana P","doi":"10.1016/j.jorganchem.2025.123806","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the catalytic degradation of methylene blue (MB) using copper oxide nanoparticles embedded in folic acid-functionalized graphene nanocomposites (CuO-FAFGNCs). The nanocomposites were synthesized by functionalizing graphene with folic acid followed by embedding CuO nanoparticles. Characterization through UV-Vis, FT-IR, XRD, TEM, and SEM confirmed the successful synthesis and structural integrity of the material. Catalytic activity was assessed using NaBH₄ as a reducing agent, achieving nearly 90 % MB degradation within 16 minutes, following pseudo-first-order kinetics (k = 0.1477 min⁻¹). While the nanocomposites show strong potential for wastewater treatment, performance may decline over repeated use due to surface fouling or structural changes. Further studies are needed to assess effectiveness against other contaminants.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1039 ","pages":"Article 123806"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced methylene blue degradation of copper oxide nanoparticles embedded functionalized graphene nano composites\",\"authors\":\"Adwin Jose P , Revathi N , Dhaveethu Raja J , Murugesan Sankarganesh , Sivaranjana P\",\"doi\":\"10.1016/j.jorganchem.2025.123806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the catalytic degradation of methylene blue (MB) using copper oxide nanoparticles embedded in folic acid-functionalized graphene nanocomposites (CuO-FAFGNCs). The nanocomposites were synthesized by functionalizing graphene with folic acid followed by embedding CuO nanoparticles. Characterization through UV-Vis, FT-IR, XRD, TEM, and SEM confirmed the successful synthesis and structural integrity of the material. Catalytic activity was assessed using NaBH₄ as a reducing agent, achieving nearly 90 % MB degradation within 16 minutes, following pseudo-first-order kinetics (k = 0.1477 min⁻¹). While the nanocomposites show strong potential for wastewater treatment, performance may decline over repeated use due to surface fouling or structural changes. Further studies are needed to assess effectiveness against other contaminants.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1039 \",\"pages\":\"Article 123806\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X25002992\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25002992","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Enhanced methylene blue degradation of copper oxide nanoparticles embedded functionalized graphene nano composites
This study explores the catalytic degradation of methylene blue (MB) using copper oxide nanoparticles embedded in folic acid-functionalized graphene nanocomposites (CuO-FAFGNCs). The nanocomposites were synthesized by functionalizing graphene with folic acid followed by embedding CuO nanoparticles. Characterization through UV-Vis, FT-IR, XRD, TEM, and SEM confirmed the successful synthesis and structural integrity of the material. Catalytic activity was assessed using NaBH₄ as a reducing agent, achieving nearly 90 % MB degradation within 16 minutes, following pseudo-first-order kinetics (k = 0.1477 min⁻¹). While the nanocomposites show strong potential for wastewater treatment, performance may decline over repeated use due to surface fouling or structural changes. Further studies are needed to assess effectiveness against other contaminants.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.