具有有限时间奇点的Kähler-Ricci流的全局Ricci曲率行为

IF 1.5 1区 数学 Q1 MATHEMATICS
Alexander Bednarek
{"title":"具有有限时间奇点的Kähler-Ricci流的全局Ricci曲率行为","authors":"Alexander Bednarek","doi":"10.1016/j.aim.2025.110465","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Kähler-Ricci flow <span><math><msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow></msub></math></span> on a compact manifold where the time of singularity, <em>T</em>, is finite. We assume the existence of a holomorphic map from the Kähler manifold <em>X</em> to some analytic variety <em>Y</em> which admits a Kähler metric on a neighbourhood of the image of <em>X</em> and that the pullback of this metric yields the limiting cohomology class along the flow. This is satisfied, for instance, by the assumption that the initial cohomology class is rational, i.e., <span><math><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><mi>Q</mi><mo>)</mo></math></span>. Under these assumptions we prove an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>-spacetime estimate on the behaviour of the Ricci curvature and that the Riemannian curvature is Type <em>I</em> with respect to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110465"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Ricci curvature behaviour for the Kähler-Ricci flow with finite time singularities\",\"authors\":\"Alexander Bednarek\",\"doi\":\"10.1016/j.aim.2025.110465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Kähler-Ricci flow <span><math><msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow></msub></math></span> on a compact manifold where the time of singularity, <em>T</em>, is finite. We assume the existence of a holomorphic map from the Kähler manifold <em>X</em> to some analytic variety <em>Y</em> which admits a Kähler metric on a neighbourhood of the image of <em>X</em> and that the pullback of this metric yields the limiting cohomology class along the flow. This is satisfied, for instance, by the assumption that the initial cohomology class is rational, i.e., <span><math><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>,</mo><mi>Q</mi><mo>)</mo></math></span>. Under these assumptions we prove an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>-spacetime estimate on the behaviour of the Ricci curvature and that the Riemannian curvature is Type <em>I</em> with respect to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110465\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003639\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003639","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个紧流形上的Kähler-Ricci流(X,ω(t))t∈[0,t],其中奇点t的时间是有限的。我们假设存在一个从Kähler流形X到某解析变量Y的全纯映射,该映射在X像的邻域上允许一个Kähler度量,并且该度量的回拉产生沿流的极限上同调类。这是可以满足的,例如,假设初始上同调类是有理的,即[ω0]∈H1,1(X,Q)。在这些假设下,我们证明了l4时空对里奇曲率行为的估计,并证明了黎曼曲率相对于l2范数是I型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Ricci curvature behaviour for the Kähler-Ricci flow with finite time singularities
We consider the Kähler-Ricci flow (X,ω(t))t[0,T) on a compact manifold where the time of singularity, T, is finite. We assume the existence of a holomorphic map from the Kähler manifold X to some analytic variety Y which admits a Kähler metric on a neighbourhood of the image of X and that the pullback of this metric yields the limiting cohomology class along the flow. This is satisfied, for instance, by the assumption that the initial cohomology class is rational, i.e., [ω0]H1,1(X,Q). Under these assumptions we prove an L4-spacetime estimate on the behaviour of the Ricci curvature and that the Riemannian curvature is Type I with respect to the L2-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信