Lu Mao , Haitao Li , Hang Guo , Xingguang Jin , Dongdong He , Qisheng Feng , Pengyue Gao , Guangyao Chen , Chonghe Li
{"title":"过热对熔融BaZrO3坩埚中感应熔化Ti-46Al-8Nb合金组织和力学性能的影响","authors":"Lu Mao , Haitao Li , Hang Guo , Xingguang Jin , Dongdong He , Qisheng Feng , Pengyue Gao , Guangyao Chen , Chonghe Li","doi":"10.1016/j.intermet.2025.108957","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, kilogram-level experiments for preparing the Ti-46Al-8Nb alloy were conducted using vacuum induction melting with a self-developed fused BaZrO<sub>3</sub> crucible. The effects of melting and casting temperatures (1560 °C, 1600 °C, and 1700 °C) on the alloy's oxygen content, structure, and mechanical properties were systematically investigated. The results showed that the alloy after melting at 1560 °C exhibited the lowest oxygen content (916 ppm), the smallest shrinkage cavities and cellular dendrites, along with the least amount of brittle α<sub>2</sub> phase. However, the formation of numerous microcracks within the alloy significantly deteriorated its mechanical properties. The alloy after melting at 1700 °C had the highest oxygen content (2941 ppm), the largest shrinkage cavities and dendrites, and the greatest amount of α<sub>2</sub> phase, all of which contributed to its poorest mechanical properties. In contrast, the alloy after melting at 1600 °C achieved a favorable balance among oxygen content (1169 ppm), microstructure, and phase composition, thereby exhibiting the best mechanical properties among the three alloys, with a tensile strength of 706 MPa and a fracture strain of 1.10 %.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"186 ","pages":"Article 108957"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of superheating on the structure and mechanical properties of Ti-46Al-8Nb alloy induction-melted in the fused BaZrO3 crucible\",\"authors\":\"Lu Mao , Haitao Li , Hang Guo , Xingguang Jin , Dongdong He , Qisheng Feng , Pengyue Gao , Guangyao Chen , Chonghe Li\",\"doi\":\"10.1016/j.intermet.2025.108957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, kilogram-level experiments for preparing the Ti-46Al-8Nb alloy were conducted using vacuum induction melting with a self-developed fused BaZrO<sub>3</sub> crucible. The effects of melting and casting temperatures (1560 °C, 1600 °C, and 1700 °C) on the alloy's oxygen content, structure, and mechanical properties were systematically investigated. The results showed that the alloy after melting at 1560 °C exhibited the lowest oxygen content (916 ppm), the smallest shrinkage cavities and cellular dendrites, along with the least amount of brittle α<sub>2</sub> phase. However, the formation of numerous microcracks within the alloy significantly deteriorated its mechanical properties. The alloy after melting at 1700 °C had the highest oxygen content (2941 ppm), the largest shrinkage cavities and dendrites, and the greatest amount of α<sub>2</sub> phase, all of which contributed to its poorest mechanical properties. In contrast, the alloy after melting at 1600 °C achieved a favorable balance among oxygen content (1169 ppm), microstructure, and phase composition, thereby exhibiting the best mechanical properties among the three alloys, with a tensile strength of 706 MPa and a fracture strain of 1.10 %.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"186 \",\"pages\":\"Article 108957\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096697952500322X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096697952500322X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of superheating on the structure and mechanical properties of Ti-46Al-8Nb alloy induction-melted in the fused BaZrO3 crucible
In this study, kilogram-level experiments for preparing the Ti-46Al-8Nb alloy were conducted using vacuum induction melting with a self-developed fused BaZrO3 crucible. The effects of melting and casting temperatures (1560 °C, 1600 °C, and 1700 °C) on the alloy's oxygen content, structure, and mechanical properties were systematically investigated. The results showed that the alloy after melting at 1560 °C exhibited the lowest oxygen content (916 ppm), the smallest shrinkage cavities and cellular dendrites, along with the least amount of brittle α2 phase. However, the formation of numerous microcracks within the alloy significantly deteriorated its mechanical properties. The alloy after melting at 1700 °C had the highest oxygen content (2941 ppm), the largest shrinkage cavities and dendrites, and the greatest amount of α2 phase, all of which contributed to its poorest mechanical properties. In contrast, the alloy after melting at 1600 °C achieved a favorable balance among oxygen content (1169 ppm), microstructure, and phase composition, thereby exhibiting the best mechanical properties among the three alloys, with a tensile strength of 706 MPa and a fracture strain of 1.10 %.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.