不相关观测值下多变量t分布下协方差矩阵的似然比检验

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Katarzyna Filipiak , Daniel Klein , Stepan Mazur , Malwina Mrowińska
{"title":"不相关观测值下多变量t分布下协方差矩阵的似然比检验","authors":"Katarzyna Filipiak ,&nbsp;Daniel Klein ,&nbsp;Stepan Mazur ,&nbsp;Malwina Mrowińska","doi":"10.1016/j.jmva.2025.105490","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, estimators for the unknown parameters under two types of matrix-variate <span><math><mi>t</mi></math></span> distributions are determined, and their basic statistical properties, including bias and sufficiency, are investigated. These estimators are then applied to test hypotheses concerning the covariance structure of a multivariate <span><math><mi>t</mi></math></span> distribution associated with a collection of uncorrelated, though not necessarily independent, observation vectors, using two types of matrix-variate <span><math><mi>t</mi></math></span> distributions. A likelihood ratio test is proposed, and its distributional properties under the null hypothesis are examined, assuming either a fully specified covariance matrix or one specified up to a constant. Furthermore, it is demonstrated that the asymptotic distribution for the type I matrix-variate <span><math><mi>t</mi></math></span> distribution under both hypotheses coincides with that under the normality assumption. Finally, for testing a fully specified covariance matrix, the asymptotic distribution of the likelihood ratio test statistic is determined.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105490"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Likelihood ratio test for covariance matrix under multivariate t distribution with uncorrelated observations\",\"authors\":\"Katarzyna Filipiak ,&nbsp;Daniel Klein ,&nbsp;Stepan Mazur ,&nbsp;Malwina Mrowińska\",\"doi\":\"10.1016/j.jmva.2025.105490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, estimators for the unknown parameters under two types of matrix-variate <span><math><mi>t</mi></math></span> distributions are determined, and their basic statistical properties, including bias and sufficiency, are investigated. These estimators are then applied to test hypotheses concerning the covariance structure of a multivariate <span><math><mi>t</mi></math></span> distribution associated with a collection of uncorrelated, though not necessarily independent, observation vectors, using two types of matrix-variate <span><math><mi>t</mi></math></span> distributions. A likelihood ratio test is proposed, and its distributional properties under the null hypothesis are examined, assuming either a fully specified covariance matrix or one specified up to a constant. Furthermore, it is demonstrated that the asymptotic distribution for the type I matrix-variate <span><math><mi>t</mi></math></span> distribution under both hypotheses coincides with that under the normality assumption. Finally, for testing a fully specified covariance matrix, the asymptotic distribution of the likelihood ratio test statistic is determined.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"210 \",\"pages\":\"Article 105490\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000855\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000855","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文确定了两类矩阵变量t分布下未知参数的估计量,并研究了它们的基本统计性质,包括偏置性和充分性。然后,使用两种类型的矩阵变量t分布,将这些估计量应用于检验与一组不相关但不一定独立的观察向量相关的多元t分布的协方差结构的假设。提出了似然比检验,并在零假设下检验了其分布性质,假设一个完全指定的协方差矩阵或一个指定的常数。进一步证明了两种假设下I型矩阵变量t分布的渐近分布与正态性假设下的渐近分布一致。最后,为了检验一个完全指定的协方差矩阵,确定了似然比检验统计量的渐近分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Likelihood ratio test for covariance matrix under multivariate t distribution with uncorrelated observations
In this paper, estimators for the unknown parameters under two types of matrix-variate t distributions are determined, and their basic statistical properties, including bias and sufficiency, are investigated. These estimators are then applied to test hypotheses concerning the covariance structure of a multivariate t distribution associated with a collection of uncorrelated, though not necessarily independent, observation vectors, using two types of matrix-variate t distributions. A likelihood ratio test is proposed, and its distributional properties under the null hypothesis are examined, assuming either a fully specified covariance matrix or one specified up to a constant. Furthermore, it is demonstrated that the asymptotic distribution for the type I matrix-variate t distribution under both hypotheses coincides with that under the normality assumption. Finally, for testing a fully specified covariance matrix, the asymptotic distribution of the likelihood ratio test statistic is determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信