{"title":"多元正态曲线对角变换后的精确均值和协方差公式","authors":"Rebecca Morrison , Estelle Basor","doi":"10.1016/j.jmva.2025.105489","DOIUrl":null,"url":null,"abstract":"<div><div>Consider <span><math><mrow><mi>X</mi><mo>∼</mo><mi>N</mi><mrow><mo>(</mo><mi>0</mi><mo>,</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Y</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>. We call this a diagonal transformation of a multivariate normal. In this paper we compute exactly the mean vector and covariance matrix of the random vector <span><math><mrow><mi>Y</mi><mo>.</mo></mrow></math></span> This is done in two different ways: One approach uses a series expansion for the function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and the other a transform method. We compute several examples, show how the covariance entries can be estimated, and compare the theoretical results with numerical ones.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105489"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact mean and covariance formulas after diagonal transformations of a multivariate normal\",\"authors\":\"Rebecca Morrison , Estelle Basor\",\"doi\":\"10.1016/j.jmva.2025.105489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider <span><math><mrow><mi>X</mi><mo>∼</mo><mi>N</mi><mrow><mo>(</mo><mi>0</mi><mo>,</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Y</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>. We call this a diagonal transformation of a multivariate normal. In this paper we compute exactly the mean vector and covariance matrix of the random vector <span><math><mrow><mi>Y</mi><mo>.</mo></mrow></math></span> This is done in two different ways: One approach uses a series expansion for the function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and the other a transform method. We compute several examples, show how the covariance entries can be estimated, and compare the theoretical results with numerical ones.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"210 \",\"pages\":\"Article 105489\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000843\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000843","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Exact mean and covariance formulas after diagonal transformations of a multivariate normal
Consider and . We call this a diagonal transformation of a multivariate normal. In this paper we compute exactly the mean vector and covariance matrix of the random vector This is done in two different ways: One approach uses a series expansion for the function and the other a transform method. We compute several examples, show how the covariance entries can be estimated, and compare the theoretical results with numerical ones.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.