超多孔MOF-177中依赖湿度的二氧化碳捕获:来自混合GCMC/MD模拟的见解

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Bishwas Adhikari , Aabiskar Bhusal , Qian Sun , Kapil Adhikari
{"title":"超多孔MOF-177中依赖湿度的二氧化碳捕获:来自混合GCMC/MD模拟的见解","authors":"Bishwas Adhikari ,&nbsp;Aabiskar Bhusal ,&nbsp;Qian Sun ,&nbsp;Kapil Adhikari","doi":"10.1016/j.comptc.2025.115419","DOIUrl":null,"url":null,"abstract":"<div><div>With rising atmospheric CO<sub>2</sub> levels, the need for efficient adsorbent materials has become increasingly important. Among all the porous materials, metal-organic frameworks (MOFs) are gaining considerable attention because of their large surface area, tunable pore sizes, and diverse chemical and physical properties. In this study, we used hybrid Grand Canonical Monte Carlo and Molecular Dynamics (GCMC/MD) simulations in LAMMPS to explore CO<sub>2</sub> adsorption and diffusion in MOF-177 under varying pressures, temperatures, and humidity levels. CO<sub>2</sub> uptake increased from 17.19 to 26.92 mmol/g (56.6 %) as pressure rose from 10 to 100 bar. Adsorption decreased by 30.1 % when temperature increased from 298 K to 318 K due to enhanced molecular motion. The diffusion coefficient dropped exponentially with pressure but increased with temperature. At 15 wt% humidity, CO<sub>2</sub> adsorption decreased by 12.5 % due to competition with water, which also reduced diffusion. These findings help to understand CO<sub>2</sub> sequestration under realistic conditions.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1253 ","pages":"Article 115419"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humidity-dependent CO2 capture in ultraporous MOF-177: Insights from hybrid GCMC/MD simulations\",\"authors\":\"Bishwas Adhikari ,&nbsp;Aabiskar Bhusal ,&nbsp;Qian Sun ,&nbsp;Kapil Adhikari\",\"doi\":\"10.1016/j.comptc.2025.115419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With rising atmospheric CO<sub>2</sub> levels, the need for efficient adsorbent materials has become increasingly important. Among all the porous materials, metal-organic frameworks (MOFs) are gaining considerable attention because of their large surface area, tunable pore sizes, and diverse chemical and physical properties. In this study, we used hybrid Grand Canonical Monte Carlo and Molecular Dynamics (GCMC/MD) simulations in LAMMPS to explore CO<sub>2</sub> adsorption and diffusion in MOF-177 under varying pressures, temperatures, and humidity levels. CO<sub>2</sub> uptake increased from 17.19 to 26.92 mmol/g (56.6 %) as pressure rose from 10 to 100 bar. Adsorption decreased by 30.1 % when temperature increased from 298 K to 318 K due to enhanced molecular motion. The diffusion coefficient dropped exponentially with pressure but increased with temperature. At 15 wt% humidity, CO<sub>2</sub> adsorption decreased by 12.5 % due to competition with water, which also reduced diffusion. These findings help to understand CO<sub>2</sub> sequestration under realistic conditions.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1253 \",\"pages\":\"Article 115419\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X2500355X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X2500355X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着大气中二氧化碳浓度的上升,对高效吸附剂材料的需求变得越来越重要。在所有多孔材料中,金属有机骨架(mof)因其具有较大的表面积、可调节的孔径以及多种化学和物理性质而受到广泛关注。在这项研究中,我们在LAMMPS中使用混合大规范蒙特卡罗和分子动力学(GCMC/MD)模拟来探索不同压力、温度和湿度水平下MOF-177中CO2的吸附和扩散。当压力从10 bar增加到100 bar时,CO2吸收量从17.19增加到26.92 mmol/g(56.6%)。当温度从298 K增加到318 K时,由于分子运动增强,吸附下降了30.1%。扩散系数随压力呈指数下降,随温度升高而增大。在15 wt%的湿度下,由于与水的竞争,二氧化碳的吸附减少了12.5%,这也减少了扩散。这些发现有助于了解现实条件下的二氧化碳固存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Humidity-dependent CO2 capture in ultraporous MOF-177: Insights from hybrid GCMC/MD simulations

Humidity-dependent CO2 capture in ultraporous MOF-177: Insights from hybrid GCMC/MD simulations
With rising atmospheric CO2 levels, the need for efficient adsorbent materials has become increasingly important. Among all the porous materials, metal-organic frameworks (MOFs) are gaining considerable attention because of their large surface area, tunable pore sizes, and diverse chemical and physical properties. In this study, we used hybrid Grand Canonical Monte Carlo and Molecular Dynamics (GCMC/MD) simulations in LAMMPS to explore CO2 adsorption and diffusion in MOF-177 under varying pressures, temperatures, and humidity levels. CO2 uptake increased from 17.19 to 26.92 mmol/g (56.6 %) as pressure rose from 10 to 100 bar. Adsorption decreased by 30.1 % when temperature increased from 298 K to 318 K due to enhanced molecular motion. The diffusion coefficient dropped exponentially with pressure but increased with temperature. At 15 wt% humidity, CO2 adsorption decreased by 12.5 % due to competition with water, which also reduced diffusion. These findings help to understand CO2 sequestration under realistic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信