所有电路的全粒度代理重新加密

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yuxin Zhang , Shengli Liu , Yunxiao Zhou , Haibin Zhang
{"title":"所有电路的全粒度代理重新加密","authors":"Yuxin Zhang ,&nbsp;Shengli Liu ,&nbsp;Yunxiao Zhou ,&nbsp;Haibin Zhang","doi":"10.1016/j.tcs.2025.115507","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we proposed a new concept called <em>Full-Grained PRE</em> (FG-PRE) to which a function set <span><math><mi>F</mi></math></span> is attached. With FG-PRE, a delegator authorizes the proxy a full-grained re-encryption capability for <span><math><mi>F</mi></math></span> with a <em>single</em> re-encryption key <span><math><mi>r</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi><mo>→</mo><mi>j</mi></mrow></msub></math></span>. Then, the proxy can use this <em>single</em> re-encryption key to transform <span><math><mi>c</mi><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup></math></span> encrypting message <em>m</em> for delegator <em>i</em> into an re-encrypted ciphertext <span><math><mi>c</mi><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow></msup></math></span> encrypting <span><math><mi>f</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> with <em>arbitrary</em> <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> for delegatee <em>j</em>. Thus, the proxy has a full-grained (w.r.t. <span><math><mi>F</mi></math></span>) control of the information that can be transmitted to the delegatee <em>j</em>. This is in sharp contrast to fine-grained PRE (Zhou et al. ASIACRYPT 2023), which has to generate <em>different</em> re-encryption keys to support different functions. In their fine-grained PRE, the number of re-encryption keys generated by delegator and stored by the proxy for <span><math><mi>F</mi></math></span> is linear to the size <span><math><mo>|</mo><mi>F</mi><mo>|</mo></math></span>. With our full-grained PRE, a single re-encryption key suffices.</div><div>We formalize the syntax of FG-PRE and define <span><math><mi>HRA</mi></math></span> security (security under honest re-encryption attack) and function private <span><math><mi>HRA</mi></math></span> security (<span><math><mi>FP</mi><mtext>-</mtext><mi>HRA</mi></math></span>) for FG-PRE. Compared to the <span><math><mi>CPA</mi></math></span> security (Zhou et al. ASIACRYPT 2023) and the <span><math><mi>HRA</mi></math></span> security (Zhou et al. PKC 2024) defined for the fine-grained PRE, our <span><math><mi>HRA</mi></math></span> security not only allows adversary to obtain re-encryption keys from honest users to corrupted users, but also has an enhancement: we even allow the adversary to query full-grained re-encryptions with <em>f</em> for the challenge ciphertext under the condition <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>. We construct a FG-PRE scheme <span><math><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mtext>lin</mtext></mrow></msup></math></span> for bounded linear function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mtext>lin</mtext></mrow></msub></math></span>, enjoying single-hop, unidirectional and non-interactive properties. Our scheme achieves the <span><math><mi>HRA</mi></math></span> security and <span><math><mi>FP</mi><mtext>-</mtext><mi>HRA</mi></math></span> security and can be tightly reduced to the eDBDH assumption.</div><div>Furthermore, we extend our <span><math><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mtext>lin</mtext></mrow></msup></math></span> scheme to a new FG-PRE scheme <span><math><msup><mrow><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mtext>circuit</mtext></mrow></msup></math></span>, supporting all circuits of bounded-size with the help of randomized encoding technique. We prove that our <span><math><msup><mrow><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mtext>circuit</mtext></mrow></msup></math></span> scheme also has <span><math><mi>HRA</mi></math></span> security and <span><math><mi>FP</mi><mtext>-</mtext><mi>HRA</mi></math></span> security. With our <span><math><msup><mrow><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mtext>circuit</mtext></mrow></msup></math></span> scheme, the proxy is able to use a single re-encryption key to convert ciphertext under any circuit of polynomial-bounded size.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1056 ","pages":"Article 115507"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-grained proxy re-encryption for all circuits\",\"authors\":\"Yuxin Zhang ,&nbsp;Shengli Liu ,&nbsp;Yunxiao Zhou ,&nbsp;Haibin Zhang\",\"doi\":\"10.1016/j.tcs.2025.115507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we proposed a new concept called <em>Full-Grained PRE</em> (FG-PRE) to which a function set <span><math><mi>F</mi></math></span> is attached. With FG-PRE, a delegator authorizes the proxy a full-grained re-encryption capability for <span><math><mi>F</mi></math></span> with a <em>single</em> re-encryption key <span><math><mi>r</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi><mo>→</mo><mi>j</mi></mrow></msub></math></span>. Then, the proxy can use this <em>single</em> re-encryption key to transform <span><math><mi>c</mi><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup></math></span> encrypting message <em>m</em> for delegator <em>i</em> into an re-encrypted ciphertext <span><math><mi>c</mi><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>j</mi><mo>)</mo></mrow></msup></math></span> encrypting <span><math><mi>f</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> with <em>arbitrary</em> <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> for delegatee <em>j</em>. Thus, the proxy has a full-grained (w.r.t. <span><math><mi>F</mi></math></span>) control of the information that can be transmitted to the delegatee <em>j</em>. This is in sharp contrast to fine-grained PRE (Zhou et al. ASIACRYPT 2023), which has to generate <em>different</em> re-encryption keys to support different functions. In their fine-grained PRE, the number of re-encryption keys generated by delegator and stored by the proxy for <span><math><mi>F</mi></math></span> is linear to the size <span><math><mo>|</mo><mi>F</mi><mo>|</mo></math></span>. With our full-grained PRE, a single re-encryption key suffices.</div><div>We formalize the syntax of FG-PRE and define <span><math><mi>HRA</mi></math></span> security (security under honest re-encryption attack) and function private <span><math><mi>HRA</mi></math></span> security (<span><math><mi>FP</mi><mtext>-</mtext><mi>HRA</mi></math></span>) for FG-PRE. Compared to the <span><math><mi>CPA</mi></math></span> security (Zhou et al. ASIACRYPT 2023) and the <span><math><mi>HRA</mi></math></span> security (Zhou et al. PKC 2024) defined for the fine-grained PRE, our <span><math><mi>HRA</mi></math></span> security not only allows adversary to obtain re-encryption keys from honest users to corrupted users, but also has an enhancement: we even allow the adversary to query full-grained re-encryptions with <em>f</em> for the challenge ciphertext under the condition <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>. We construct a FG-PRE scheme <span><math><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mtext>lin</mtext></mrow></msup></math></span> for bounded linear function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mtext>lin</mtext></mrow></msub></math></span>, enjoying single-hop, unidirectional and non-interactive properties. Our scheme achieves the <span><math><mi>HRA</mi></math></span> security and <span><math><mi>FP</mi><mtext>-</mtext><mi>HRA</mi></math></span> security and can be tightly reduced to the eDBDH assumption.</div><div>Furthermore, we extend our <span><math><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mtext>lin</mtext></mrow></msup></math></span> scheme to a new FG-PRE scheme <span><math><msup><mrow><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mtext>circuit</mtext></mrow></msup></math></span>, supporting all circuits of bounded-size with the help of randomized encoding technique. We prove that our <span><math><msup><mrow><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mtext>circuit</mtext></mrow></msup></math></span> scheme also has <span><math><mi>HRA</mi></math></span> security and <span><math><mi>FP</mi><mtext>-</mtext><mi>HRA</mi></math></span> security. With our <span><math><msup><mrow><msup><mrow><mtext>FG-PRE</mtext></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mtext>circuit</mtext></mrow></msup></math></span> scheme, the proxy is able to use a single re-encryption key to convert ciphertext under any circuit of polynomial-bounded size.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1056 \",\"pages\":\"Article 115507\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004451\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004451","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个新的概念,称为全粒度预(FG-PRE),它附加了一个函数集F。使用FG-PRE,委托方使用单个重加密密钥rki→j向代理授权F的全粒度重加密功能。然后,代理可以使用这个单一的重新加密密钥将ct(i)对委托i的加密消息m转换为对委托j的任意f∈f的重新加密密文ct(j)对f(m)进行加密。因此,代理对可以传输给委托j的信息具有全粒度(w.r.t.f)控制。这与细粒度PRE (Zhou等)形成鲜明对比。ASIACRYPT 2023),它必须生成不同的重加密密钥来支持不同的功能。在它们的细粒度PRE中,由委托生成并由代理为F存储的重加密密钥的数量与大小|F|呈线性关系。对于我们的全粒度PRE,一个重新加密密钥就足够了。我们形式化了FG-PRE的语法,定义了FG-PRE的HRA安全(诚实重加密攻击下的安全)和功能私有HRA安全(FP-HRA)。与CPA安全相比(Zhou et al.;ASIACRYPT 2023)和HRA安全性(Zhou等。PKC 2024)定义的细粒度PRE,我们的HRA安全性不仅允许攻击者从诚实用户到损坏用户获取重加密密钥,而且还有一个增强:我们甚至允许攻击者在条件f(m0)=f(m1)下使用f查询全粒度重加密以获取挑战密文。本文构造了有界线性函数Flin的FG-PRE方案FG-PRElin,该方案具有单跳、单向和非交互的性质。我们的方案实现了HRA安全性和FP-HRA安全性,并可以严格地约简到eDBDH假设。此外,我们将FG-PRElin方案扩展为新的FG-PRE方案FG-PRE电路,利用随机编码技术支持所有有界大小的电路。我们证明了我们的FG-PRE电路方案同样具有HRA安全性和FP-HRA安全性。使用我们的FG-PRE电路方案,代理能够在任何多项式有界的电路下使用单个重加密密钥来转换密文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-grained proxy re-encryption for all circuits
In this paper, we proposed a new concept called Full-Grained PRE (FG-PRE) to which a function set F is attached. With FG-PRE, a delegator authorizes the proxy a full-grained re-encryption capability for F with a single re-encryption key rkij. Then, the proxy can use this single re-encryption key to transform ct(i) encrypting message m for delegator i into an re-encrypted ciphertext ct(j) encrypting f(m) with arbitrary fF for delegatee j. Thus, the proxy has a full-grained (w.r.t. F) control of the information that can be transmitted to the delegatee j. This is in sharp contrast to fine-grained PRE (Zhou et al. ASIACRYPT 2023), which has to generate different re-encryption keys to support different functions. In their fine-grained PRE, the number of re-encryption keys generated by delegator and stored by the proxy for F is linear to the size |F|. With our full-grained PRE, a single re-encryption key suffices.
We formalize the syntax of FG-PRE and define HRA security (security under honest re-encryption attack) and function private HRA security (FP-HRA) for FG-PRE. Compared to the CPA security (Zhou et al. ASIACRYPT 2023) and the HRA security (Zhou et al. PKC 2024) defined for the fine-grained PRE, our HRA security not only allows adversary to obtain re-encryption keys from honest users to corrupted users, but also has an enhancement: we even allow the adversary to query full-grained re-encryptions with f for the challenge ciphertext under the condition f(m0)=f(m1). We construct a FG-PRE scheme FG-PRElin for bounded linear function Flin, enjoying single-hop, unidirectional and non-interactive properties. Our scheme achieves the HRA security and FP-HRA security and can be tightly reduced to the eDBDH assumption.
Furthermore, we extend our FG-PRElin scheme to a new FG-PRE scheme FG-PREcircuit, supporting all circuits of bounded-size with the help of randomized encoding technique. We prove that our FG-PREcircuit scheme also has HRA security and FP-HRA security. With our FG-PREcircuit scheme, the proxy is able to use a single re-encryption key to convert ciphertext under any circuit of polynomial-bounded size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信