有机太阳能电池形态形成的Cahn-Hilliard-Navier-Stokes模型的预处理

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Pelin Çiloğlu , Carmen Tretmans , Roland Herzog , Jan-F. Pietschmann , Martin Stoll
{"title":"有机太阳能电池形态形成的Cahn-Hilliard-Navier-Stokes模型的预处理","authors":"Pelin Çiloğlu ,&nbsp;Carmen Tretmans ,&nbsp;Roland Herzog ,&nbsp;Jan-F. Pietschmann ,&nbsp;Martin Stoll","doi":"10.1016/j.jcp.2025.114280","DOIUrl":null,"url":null,"abstract":"<div><div>We present a model for the morphology evolution of printed organic solar cells, which occurs during the drying of a mixture of polymer, non-fullerene acceptor, and solvent. Our model uses a phase field approach coupled to a Navier–Stokes equation describing the macroscopic movement of the fluid. Additionally, we incorporate the evaporation process of the solvent using an Allen–Cahn equation. The model is discretized using a finite-element approach with a semi-implicit discretization in time. The resulting (non)linear systems are coupled and of large dimensionality. We present a preconditioned iterative scheme to solve them robustly with respect to changes in the discretization parameters. We illustrate that the preconditioned solver shows parameter-robust iteration numbers and that the model qualitatively captures the behavior of the film morphology during drying.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"540 ","pages":"Article 114280"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preconditioning for a Cahn–Hilliard–Navier–Stokes model for morphology formation in organic solar cells\",\"authors\":\"Pelin Çiloğlu ,&nbsp;Carmen Tretmans ,&nbsp;Roland Herzog ,&nbsp;Jan-F. Pietschmann ,&nbsp;Martin Stoll\",\"doi\":\"10.1016/j.jcp.2025.114280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a model for the morphology evolution of printed organic solar cells, which occurs during the drying of a mixture of polymer, non-fullerene acceptor, and solvent. Our model uses a phase field approach coupled to a Navier–Stokes equation describing the macroscopic movement of the fluid. Additionally, we incorporate the evaporation process of the solvent using an Allen–Cahn equation. The model is discretized using a finite-element approach with a semi-implicit discretization in time. The resulting (non)linear systems are coupled and of large dimensionality. We present a preconditioned iterative scheme to solve them robustly with respect to changes in the discretization parameters. We illustrate that the preconditioned solver shows parameter-robust iteration numbers and that the model qualitatively captures the behavior of the film morphology during drying.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"540 \",\"pages\":\"Article 114280\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125005637\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125005637","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了印刷有机太阳能电池的形态演化模型,该模型发生在聚合物、非富勒烯受体和溶剂的混合物干燥过程中。我们的模型使用相场方法与描述流体宏观运动的Navier-Stokes方程相结合。此外,我们结合了溶剂的蒸发过程使用艾伦-卡恩方程。采用有限元方法对模型进行离散,并在时间上进行半隐式离散。所得到的(非线性)系统是耦合的和大维的。针对离散化参数的变化,我们提出了一种预条件迭代方案来鲁棒求解这些问题。我们说明了预条件求解器显示参数鲁棒迭代数,并且该模型定性地捕获了干燥过程中膜形态的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preconditioning for a Cahn–Hilliard–Navier–Stokes model for morphology formation in organic solar cells
We present a model for the morphology evolution of printed organic solar cells, which occurs during the drying of a mixture of polymer, non-fullerene acceptor, and solvent. Our model uses a phase field approach coupled to a Navier–Stokes equation describing the macroscopic movement of the fluid. Additionally, we incorporate the evaporation process of the solvent using an Allen–Cahn equation. The model is discretized using a finite-element approach with a semi-implicit discretization in time. The resulting (non)linear systems are coupled and of large dimensionality. We present a preconditioned iterative scheme to solve them robustly with respect to changes in the discretization parameters. We illustrate that the preconditioned solver shows parameter-robust iteration numbers and that the model qualitatively captures the behavior of the film morphology during drying.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信