通过动态多保真度建模改进过程监控

Q3 Engineering
Rastislav Fáber , Marco Vaccari , Riccardo Bacci di Capaci , Karol Ľubušký , Gabriele Pannocchia , Radoslav Paulen
{"title":"通过动态多保真度建模改进过程监控","authors":"Rastislav Fáber ,&nbsp;Marco Vaccari ,&nbsp;Riccardo Bacci di Capaci ,&nbsp;Karol Ľubušký ,&nbsp;Gabriele Pannocchia ,&nbsp;Radoslav Paulen","doi":"10.1016/j.ifacol.2025.07.145","DOIUrl":null,"url":null,"abstract":"<div><div>We study real-time process monitoring, where employed online sensors yield inaccurate information. A multi-fidelity (MF) modeling approach is adopted that integrates dynamic information from online, low-fidelity (LF) data with infrequent, high-fidelity (HF) laboratory measurements. The proposed methodology is demonstrated on a composition monitoring problem derived from real oil refinery operations. The developed MF model exhibits a significant improvement in accuracy with respect to both LF data (online sensor) and the HF model (standard soft sensor). The results highlight the potential of MF modeling for improving process monitoring and control through the integration of diverse data sources.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 6","pages":"Pages 199-204"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Process Monitoring via Dynamic Multi-Fidelity Modeling\",\"authors\":\"Rastislav Fáber ,&nbsp;Marco Vaccari ,&nbsp;Riccardo Bacci di Capaci ,&nbsp;Karol Ľubušký ,&nbsp;Gabriele Pannocchia ,&nbsp;Radoslav Paulen\",\"doi\":\"10.1016/j.ifacol.2025.07.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study real-time process monitoring, where employed online sensors yield inaccurate information. A multi-fidelity (MF) modeling approach is adopted that integrates dynamic information from online, low-fidelity (LF) data with infrequent, high-fidelity (HF) laboratory measurements. The proposed methodology is demonstrated on a composition monitoring problem derived from real oil refinery operations. The developed MF model exhibits a significant improvement in accuracy with respect to both LF data (online sensor) and the HF model (standard soft sensor). The results highlight the potential of MF modeling for improving process monitoring and control through the integration of diverse data sources.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"59 6\",\"pages\":\"Pages 199-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896325005051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325005051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

我们研究实时过程监控,其中使用在线传感器产生不准确的信息。采用多保真度(MF)建模方法,将在线低保真度(LF)数据的动态信息与不频繁的高保真度(HF)实验室测量相结合。最后,以实际炼油厂的成分监测问题为例进行了验证。开发的中频模型在低频数据(在线传感器)和高频模型(标准软传感器)的精度方面都有显著提高。结果突出了MF建模的潜力,通过集成不同的数据源来改善过程监测和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Process Monitoring via Dynamic Multi-Fidelity Modeling
We study real-time process monitoring, where employed online sensors yield inaccurate information. A multi-fidelity (MF) modeling approach is adopted that integrates dynamic information from online, low-fidelity (LF) data with infrequent, high-fidelity (HF) laboratory measurements. The proposed methodology is demonstrated on a composition monitoring problem derived from real oil refinery operations. The developed MF model exhibits a significant improvement in accuracy with respect to both LF data (online sensor) and the HF model (standard soft sensor). The results highlight the potential of MF modeling for improving process monitoring and control through the integration of diverse data sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信