Daniel Mayfrank , Na Young Ahn , Alexander Mitsos , Manuel Dahmen
{"title":"基于可微仿真和优化的eNMPC任务最优数据驱动代理模型","authors":"Daniel Mayfrank , Na Young Ahn , Alexander Mitsos , Manuel Dahmen","doi":"10.1016/j.ifacol.2025.07.119","DOIUrl":null,"url":null,"abstract":"<div><div>We present a method for end-to-end learning of Koopman surrogate models for optimal performance in a specific control task. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models to aid the policy optimization. We evaluate the performance of our method by comparing it to that of other training algorithms on an existing economic nonlinear model predictive control (eNMPC) case study of a continuous stirred-tank reactor (CSTR) model. Compared to the benchmark methods, our method produces similar economic performance while eliminating constraint violations. Thus, for this case study, our method outperforms the others and offers a promising path toward more performant controllers that employ dynamic surrogate models.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 6","pages":"Pages 43-48"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task-optimal data-driven surrogate models for eNMPC via differentiable simulation and optimization\",\"authors\":\"Daniel Mayfrank , Na Young Ahn , Alexander Mitsos , Manuel Dahmen\",\"doi\":\"10.1016/j.ifacol.2025.07.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a method for end-to-end learning of Koopman surrogate models for optimal performance in a specific control task. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models to aid the policy optimization. We evaluate the performance of our method by comparing it to that of other training algorithms on an existing economic nonlinear model predictive control (eNMPC) case study of a continuous stirred-tank reactor (CSTR) model. Compared to the benchmark methods, our method produces similar economic performance while eliminating constraint violations. Thus, for this case study, our method outperforms the others and offers a promising path toward more performant controllers that employ dynamic surrogate models.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"59 6\",\"pages\":\"Pages 43-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896325004793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325004793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Task-optimal data-driven surrogate models for eNMPC via differentiable simulation and optimization
We present a method for end-to-end learning of Koopman surrogate models for optimal performance in a specific control task. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models to aid the policy optimization. We evaluate the performance of our method by comparing it to that of other training algorithms on an existing economic nonlinear model predictive control (eNMPC) case study of a continuous stirred-tank reactor (CSTR) model. Compared to the benchmark methods, our method produces similar economic performance while eliminating constraint violations. Thus, for this case study, our method outperforms the others and offers a promising path toward more performant controllers that employ dynamic surrogate models.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.