基于脑电数据的离散小波变换和带通滤波增强癫痫检测:基于art和LVQ模型的集成

Seyed Matin Malakouti
{"title":"基于脑电数据的离散小波变换和带通滤波增强癫痫检测:基于art和LVQ模型的集成","authors":"Seyed Matin Malakouti","doi":"10.1016/j.ceh.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate detection of epileptic seizures from EEG signals is vital for early diagnosis and treatment of epilepsy. However, EEG signals are inherently nonstationary and noisy, posing significant challenges for classification. This study presents a lightweight and interpretable framework for epileptic seizure detection, combining Discrete Wavelet Transform (DWT) and bandpass filtering for robust time–frequency feature extraction. We evaluate multiple adaptive classifiers, including Adaptive Resonance Theory (ART1, ARTMAP) and Learning Vector Quantization (LVQ), enhanced through grid search and ensemble learning.</div><div>Experiments were conducted using the Bonn EEG dataset, focusing on classifying interictal and ictal EEG signals. Among the evaluated models, ARTMAP with preprocessing and ensemble techniques achieved the best performance (AUC = 0.85), followed by ART1 with grid search and ensemble (AUC = 0.81). These results demonstrate that interpretable, adaptive models can offer competitive performance in EEG classification, while maintaining computational efficiency compared to deep learning methods.</div><div>The proposed method provides a practical and transparent solution for EEG-based seizure detection, especially suited for real-time clinical applications and resource-constrained environments.</div></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"8 ","pages":"Pages 134-145"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced epilepsy detection using discrete wavelet transform and bandpass filtering on EEG data: integration of ART-based and LVQ models\",\"authors\":\"Seyed Matin Malakouti\",\"doi\":\"10.1016/j.ceh.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate detection of epileptic seizures from EEG signals is vital for early diagnosis and treatment of epilepsy. However, EEG signals are inherently nonstationary and noisy, posing significant challenges for classification. This study presents a lightweight and interpretable framework for epileptic seizure detection, combining Discrete Wavelet Transform (DWT) and bandpass filtering for robust time–frequency feature extraction. We evaluate multiple adaptive classifiers, including Adaptive Resonance Theory (ART1, ARTMAP) and Learning Vector Quantization (LVQ), enhanced through grid search and ensemble learning.</div><div>Experiments were conducted using the Bonn EEG dataset, focusing on classifying interictal and ictal EEG signals. Among the evaluated models, ARTMAP with preprocessing and ensemble techniques achieved the best performance (AUC = 0.85), followed by ART1 with grid search and ensemble (AUC = 0.81). These results demonstrate that interpretable, adaptive models can offer competitive performance in EEG classification, while maintaining computational efficiency compared to deep learning methods.</div><div>The proposed method provides a practical and transparent solution for EEG-based seizure detection, especially suited for real-time clinical applications and resource-constrained environments.</div></div>\",\"PeriodicalId\":100268,\"journal\":{\"name\":\"Clinical eHealth\",\"volume\":\"8 \",\"pages\":\"Pages 134-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical eHealth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258891412500019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258891412500019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从脑电图信号中准确检测癫痫发作对于癫痫的早期诊断和治疗至关重要。然而,脑电信号具有固有的非平稳和噪声,给分类带来了重大挑战。本研究提出了一种轻量级且可解释的癫痫发作检测框架,结合离散小波变换(DWT)和带通滤波进行鲁棒时频特征提取。我们评估了多种自适应分类器,包括自适应共振理论(ART1, ARTMAP)和学习向量量化(LVQ),通过网格搜索和集成学习增强。使用波恩EEG数据集进行实验,重点对间歇期和间歇期EEG信号进行分类。在评价的模型中,采用预处理和集成技术的ARTMAP模型表现最佳(AUC = 0.85),其次是采用网格搜索和集成技术的ART1模型(AUC = 0.81)。这些结果表明,与深度学习方法相比,可解释的、自适应的模型在保持计算效率的同时,可以在EEG分类中提供有竞争力的性能。该方法为基于脑电图的癫痫发作检测提供了一种实用、透明的解决方案,特别适合于实时临床应用和资源受限的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced epilepsy detection using discrete wavelet transform and bandpass filtering on EEG data: integration of ART-based and LVQ models
Accurate detection of epileptic seizures from EEG signals is vital for early diagnosis and treatment of epilepsy. However, EEG signals are inherently nonstationary and noisy, posing significant challenges for classification. This study presents a lightweight and interpretable framework for epileptic seizure detection, combining Discrete Wavelet Transform (DWT) and bandpass filtering for robust time–frequency feature extraction. We evaluate multiple adaptive classifiers, including Adaptive Resonance Theory (ART1, ARTMAP) and Learning Vector Quantization (LVQ), enhanced through grid search and ensemble learning.
Experiments were conducted using the Bonn EEG dataset, focusing on classifying interictal and ictal EEG signals. Among the evaluated models, ARTMAP with preprocessing and ensemble techniques achieved the best performance (AUC = 0.85), followed by ART1 with grid search and ensemble (AUC = 0.81). These results demonstrate that interpretable, adaptive models can offer competitive performance in EEG classification, while maintaining computational efficiency compared to deep learning methods.
The proposed method provides a practical and transparent solution for EEG-based seizure detection, especially suited for real-time clinical applications and resource-constrained environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信