混合深度学习使多机构的活跃骨髓描绘妇科放疗

IF 3.3 Q2 ONCOLOGY
Zhe Zhang , Xiao Lu , Sicheng He , Tao Huang , Shaobin Wang , Mingjun Lu , Xiaomin Zhang , Zhibo Tan , John Moraros , Lei Zhang , Xin Li , Zhan Li , Zihao Deng , Yimeng Zhang , Mengjie Dong , Shuihua Wang , Yajie Liu
{"title":"混合深度学习使多机构的活跃骨髓描绘妇科放疗","authors":"Zhe Zhang ,&nbsp;Xiao Lu ,&nbsp;Sicheng He ,&nbsp;Tao Huang ,&nbsp;Shaobin Wang ,&nbsp;Mingjun Lu ,&nbsp;Xiaomin Zhang ,&nbsp;Zhibo Tan ,&nbsp;John Moraros ,&nbsp;Lei Zhang ,&nbsp;Xin Li ,&nbsp;Zhan Li ,&nbsp;Zihao Deng ,&nbsp;Yimeng Zhang ,&nbsp;Mengjie Dong ,&nbsp;Shuihua Wang ,&nbsp;Yajie Liu","doi":"10.1016/j.phro.2025.100823","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Pelvic radiotherapy for gynecologic cancer inevitably irradiates sensitive areas like iliac bones, lumbar vertebrae, and sacrum. Using <sup>18</sup>F-FDG PET/CT as a reference, we developed a deep learning method to detect hematopoietic active bone marrow (ABM) on CT in gynecologic cancer patients and assess clinical benefits.</div></div><div><h3>Materials and methods</h3><div>We analyzed 319 patients from five institutions retrospectively. ABM was divided into three 18F-FDG PET/CT-defined subregions: active iliac bone marrow (A_IBM), active sacral bone marrow (A_SBM), and active lumbar vertebrae bone marrow (A_LVBM), defined as areas with standardized uptake values exceeding subregional means. Six deep learning models were trained: hybrid nnU-Net, U-Net, V-Net, ResU-Net, nnU-Net, and UNETR. The hybrid nnU-Net approach integrated nnU-Net predictions with anatomical bone structures via Boolean operations, providing a post-processing strategy. The dataset was split into 290 cases for training and 29 for independent testing. Performance was evaluated using Dice similarity coefficients (DSCs) and 95th percentile Hausdorff distance (HD95). Two clinical cases were prospectively evaluated for ABM-sparing radiotherapy with hematologic monitoring.</div></div><div><h3>Results</h3><div>The hybrid nnU-Net achieved the highest DSCs for A_IBM (0.74 ± 0.06), A_LVBM (0.79 ± 0.07), and A_SBM (0.75 ± 0.06), with significant improvements over most models (p &lt; 0.001), except nnU-Net. Despite ResU-Net’s lower HD95 in two subregions, hybrid nnU-Net showed superior accuracy. No grade ≥2 hematologic toxicity occurred in prospective cases.</div></div><div><h3>Conclusion</h3><div>This multi-institutional study confirms that the hybrid nnU-Net accurately segments ABM from CT images, showing potential for ABM-sparing radiotherapy.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"35 ","pages":"Article 100823"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid deep learning enables multi-institutional delineation of active bone marrow for gynecologic radiotherapy\",\"authors\":\"Zhe Zhang ,&nbsp;Xiao Lu ,&nbsp;Sicheng He ,&nbsp;Tao Huang ,&nbsp;Shaobin Wang ,&nbsp;Mingjun Lu ,&nbsp;Xiaomin Zhang ,&nbsp;Zhibo Tan ,&nbsp;John Moraros ,&nbsp;Lei Zhang ,&nbsp;Xin Li ,&nbsp;Zhan Li ,&nbsp;Zihao Deng ,&nbsp;Yimeng Zhang ,&nbsp;Mengjie Dong ,&nbsp;Shuihua Wang ,&nbsp;Yajie Liu\",\"doi\":\"10.1016/j.phro.2025.100823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>Pelvic radiotherapy for gynecologic cancer inevitably irradiates sensitive areas like iliac bones, lumbar vertebrae, and sacrum. Using <sup>18</sup>F-FDG PET/CT as a reference, we developed a deep learning method to detect hematopoietic active bone marrow (ABM) on CT in gynecologic cancer patients and assess clinical benefits.</div></div><div><h3>Materials and methods</h3><div>We analyzed 319 patients from five institutions retrospectively. ABM was divided into three 18F-FDG PET/CT-defined subregions: active iliac bone marrow (A_IBM), active sacral bone marrow (A_SBM), and active lumbar vertebrae bone marrow (A_LVBM), defined as areas with standardized uptake values exceeding subregional means. Six deep learning models were trained: hybrid nnU-Net, U-Net, V-Net, ResU-Net, nnU-Net, and UNETR. The hybrid nnU-Net approach integrated nnU-Net predictions with anatomical bone structures via Boolean operations, providing a post-processing strategy. The dataset was split into 290 cases for training and 29 for independent testing. Performance was evaluated using Dice similarity coefficients (DSCs) and 95th percentile Hausdorff distance (HD95). Two clinical cases were prospectively evaluated for ABM-sparing radiotherapy with hematologic monitoring.</div></div><div><h3>Results</h3><div>The hybrid nnU-Net achieved the highest DSCs for A_IBM (0.74 ± 0.06), A_LVBM (0.79 ± 0.07), and A_SBM (0.75 ± 0.06), with significant improvements over most models (p &lt; 0.001), except nnU-Net. Despite ResU-Net’s lower HD95 in two subregions, hybrid nnU-Net showed superior accuracy. No grade ≥2 hematologic toxicity occurred in prospective cases.</div></div><div><h3>Conclusion</h3><div>This multi-institutional study confirms that the hybrid nnU-Net accurately segments ABM from CT images, showing potential for ABM-sparing radiotherapy.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"35 \",\"pages\":\"Article 100823\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631625001289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625001289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的妇科肿瘤盆腔放射治疗不可避免地会照射到敏感部位,如髂骨、腰椎和骶骨。以18F-FDG PET/CT为参照,我们开发了一种深度学习方法在妇科肿瘤患者CT上检测造血活性骨髓(ABM)并评估临床疗效。材料和方法回顾性分析来自5家医院的319例患者。ABM被分为三个18F-FDG PET/ ct定义的亚区:活跃的髂骨髓(A_IBM)、活跃的骶骨骨髓(A_SBM)和活跃的腰椎骨髓(A_LVBM),定义为标准化摄取值超过分区域平均值的区域。训练了6个深度学习模型:混合nnU-Net、U-Net、V-Net、ResU-Net、nnU-Net和UNETR。混合nnU-Net方法通过布尔运算将nnU-Net预测与解剖骨结构相结合,提供了一种后处理策略。数据集被分成290个案例用于训练,29个案例用于独立测试。使用Dice相似系数(dsc)和第95百分位Hausdorff距离(HD95)评估性能。对2例临床病例进行血液学监测下保留abm放射治疗的前瞻性评价。结果混合nnU-Net对A_IBM(0.74±0.06)、A_LVBM(0.79±0.07)和A_SBM(0.75±0.06)的dsc最高,与大多数模型相比有显著提高(p <;0.001), nnU-Net除外。尽管ResU-Net在两个子区域的HD95较低,但混合nnU-Net显示出更高的准确性。前瞻性病例未发生≥2级血液学毒性。结论:这项多机构研究证实,混合nnU-Net可以准确地从CT图像中分割ABM,显示出保留ABM放疗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid deep learning enables multi-institutional delineation of active bone marrow for gynecologic radiotherapy

Hybrid deep learning enables multi-institutional delineation of active bone marrow for gynecologic radiotherapy

Background and purpose

Pelvic radiotherapy for gynecologic cancer inevitably irradiates sensitive areas like iliac bones, lumbar vertebrae, and sacrum. Using 18F-FDG PET/CT as a reference, we developed a deep learning method to detect hematopoietic active bone marrow (ABM) on CT in gynecologic cancer patients and assess clinical benefits.

Materials and methods

We analyzed 319 patients from five institutions retrospectively. ABM was divided into three 18F-FDG PET/CT-defined subregions: active iliac bone marrow (A_IBM), active sacral bone marrow (A_SBM), and active lumbar vertebrae bone marrow (A_LVBM), defined as areas with standardized uptake values exceeding subregional means. Six deep learning models were trained: hybrid nnU-Net, U-Net, V-Net, ResU-Net, nnU-Net, and UNETR. The hybrid nnU-Net approach integrated nnU-Net predictions with anatomical bone structures via Boolean operations, providing a post-processing strategy. The dataset was split into 290 cases for training and 29 for independent testing. Performance was evaluated using Dice similarity coefficients (DSCs) and 95th percentile Hausdorff distance (HD95). Two clinical cases were prospectively evaluated for ABM-sparing radiotherapy with hematologic monitoring.

Results

The hybrid nnU-Net achieved the highest DSCs for A_IBM (0.74 ± 0.06), A_LVBM (0.79 ± 0.07), and A_SBM (0.75 ± 0.06), with significant improvements over most models (p < 0.001), except nnU-Net. Despite ResU-Net’s lower HD95 in two subregions, hybrid nnU-Net showed superior accuracy. No grade ≥2 hematologic toxicity occurred in prospective cases.

Conclusion

This multi-institutional study confirms that the hybrid nnU-Net accurately segments ABM from CT images, showing potential for ABM-sparing radiotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信