格拉斯曼属仿射品种的程度

IF 1.5 1区 数学 Q1 MATHEMATICS
Lek-Heng Lim , Ke Ye
{"title":"格拉斯曼属仿射品种的程度","authors":"Lek-Heng Lim ,&nbsp;Ke Ye","doi":"10.1016/j.aim.2025.110459","DOIUrl":null,"url":null,"abstract":"<div><div>The degree of the Grassmannian with respect to the Plücker embedding is well-known. However, the Plücker embedding, while ubiquitous in pure mathematics, is almost never used in applied mathematics. In applied mathematics, the Grassmannian is usually embedded as projection matrices <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>≅</mo><mo>{</mo><mi>P</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>=</mo><mi>P</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>tr</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span> or as involution matrices <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>≅</mo><mo>{</mo><mi>X</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>=</mo><mi>X</mi><mo>,</mo><mspace></mspace><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>I</mi><mo>,</mo><mspace></mspace><mi>tr</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo>}</mo></math></span>. We will determine an explicit expression for the degree of the Grassmannian with respect to these embeddings. In so doing, we resolved a conjecture of Devriendt, Friedman, Reinke, and Sturmfels about the degree of <span><math><mi>Gr</mi><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and in fact generalized it to <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. We also proved a set-theoretic variant of another conjecture of theirs about the limit of <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> in the sense of Gröbner degeneration.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110459"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree of the Grassmannian as an affine variety\",\"authors\":\"Lek-Heng Lim ,&nbsp;Ke Ye\",\"doi\":\"10.1016/j.aim.2025.110459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The degree of the Grassmannian with respect to the Plücker embedding is well-known. However, the Plücker embedding, while ubiquitous in pure mathematics, is almost never used in applied mathematics. In applied mathematics, the Grassmannian is usually embedded as projection matrices <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>≅</mo><mo>{</mo><mi>P</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>=</mo><mi>P</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>tr</mi><mo>(</mo><mi>P</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>}</mo></math></span> or as involution matrices <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>≅</mo><mo>{</mo><mi>X</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup><mo>:</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>T</mi></mrow></msup><mo>=</mo><mi>X</mi><mo>,</mo><mspace></mspace><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>I</mi><mo>,</mo><mspace></mspace><mi>tr</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo>}</mo></math></span>. We will determine an explicit expression for the degree of the Grassmannian with respect to these embeddings. In so doing, we resolved a conjecture of Devriendt, Friedman, Reinke, and Sturmfels about the degree of <span><math><mi>Gr</mi><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and in fact generalized it to <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. We also proved a set-theoretic variant of another conjecture of theirs about the limit of <span><math><mi>Gr</mi><mo>(</mo><mi>k</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> in the sense of Gröbner degeneration.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110459\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003573\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003573","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

格拉斯曼嵌入相对于plpl克尔嵌入的程度是众所周知的。然而,plicker嵌入虽然在纯数学中无处不在,但在应用数学中几乎从未使用过。在应用数学中,Grassmannian通常被嵌入为投影矩阵Gr(k,Rn) = {P∈Rn×n:PT=P=P2,tr(P)=k}或对合矩阵Gr(k,Rn) = {X∈Rn×n:XT=X,X2=I,tr(X)=2k−n}。我们将确定关于这些嵌入的格拉斯曼度的显式表达式。通过这样做,我们解决了Devriendt, Friedman, Reinke和Sturmfels关于Gr(2,Rn)度的猜想,并将其推广到Gr(k,Rn)。我们还证明了他们关于Gr(k,Rn)在Gröbner退化意义上的极限的另一个猜想的集合论变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree of the Grassmannian as an affine variety
The degree of the Grassmannian with respect to the Plücker embedding is well-known. However, the Plücker embedding, while ubiquitous in pure mathematics, is almost never used in applied mathematics. In applied mathematics, the Grassmannian is usually embedded as projection matrices Gr(k,Rn){PRn×n:PT=P=P2,tr(P)=k} or as involution matrices Gr(k,Rn){XRn×n:XT=X,X2=I,tr(X)=2kn}. We will determine an explicit expression for the degree of the Grassmannian with respect to these embeddings. In so doing, we resolved a conjecture of Devriendt, Friedman, Reinke, and Sturmfels about the degree of Gr(2,Rn) and in fact generalized it to Gr(k,Rn). We also proved a set-theoretic variant of another conjecture of theirs about the limit of Gr(k,Rn) in the sense of Gröbner degeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信