人工智能自动设计随机建筑平面图的消防喷头布局

Yanfu Zeng , Xinyi Liu , Yifei Ding , Zhe Zheng , Tianhang Zhang , Xinyan Huang , Xinzheng Lu
{"title":"人工智能自动设计随机建筑平面图的消防喷头布局","authors":"Yanfu Zeng ,&nbsp;Xinyi Liu ,&nbsp;Yifei Ding ,&nbsp;Zhe Zheng ,&nbsp;Tianhang Zhang ,&nbsp;Xinyan Huang ,&nbsp;Xinzheng Lu","doi":"10.1016/j.iintel.2025.100167","DOIUrl":null,"url":null,"abstract":"<div><div>Fire sprinkler system is a commonly designed safety provision in modern buildings, yet the current manual drawing preparation process is burdened by time-consuming tasks, heavy workloads, and human errors. This study introduces an intelligent framework aimed at automating the drawing preparation process for fire sprinkler layout. A database of 120 sprinkler design drawings was compiled to train a pix2pixHD generative adversarial network (GAN). After training, the GAN model can generate sprinkler placement with a protection coverage of 99.5% for new and random architectural floorplans. Apart from ensuring code-compliant design, the total number of sprinklers designed by GAN is 13% lower than those arranged by professional engineers. By adopting this intelligent method, the time needed for design drawing preparation can be saved by 76%, and the cost-benefit of the sprinkler design can be improved by using reasonable fewer sprinklers.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 4","pages":"Article 100167"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-powered automatic design of fire sprinkler layout for random building floorplans\",\"authors\":\"Yanfu Zeng ,&nbsp;Xinyi Liu ,&nbsp;Yifei Ding ,&nbsp;Zhe Zheng ,&nbsp;Tianhang Zhang ,&nbsp;Xinyan Huang ,&nbsp;Xinzheng Lu\",\"doi\":\"10.1016/j.iintel.2025.100167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fire sprinkler system is a commonly designed safety provision in modern buildings, yet the current manual drawing preparation process is burdened by time-consuming tasks, heavy workloads, and human errors. This study introduces an intelligent framework aimed at automating the drawing preparation process for fire sprinkler layout. A database of 120 sprinkler design drawings was compiled to train a pix2pixHD generative adversarial network (GAN). After training, the GAN model can generate sprinkler placement with a protection coverage of 99.5% for new and random architectural floorplans. Apart from ensuring code-compliant design, the total number of sprinklers designed by GAN is 13% lower than those arranged by professional engineers. By adopting this intelligent method, the time needed for design drawing preparation can be saved by 76%, and the cost-benefit of the sprinkler design can be improved by using reasonable fewer sprinklers.</div></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"4 4\",\"pages\":\"Article 100167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772991525000301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991525000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

消防喷淋系统是现代建筑中常见的安全设施,但目前手工绘制图纸的过程耗时长,工作量大,容易出现人为错误。本文介绍了一种智能框架,旨在实现消防喷头布置图编制过程的自动化。建立了一个包含120张喷淋设计图纸的数据库,用于训练一个pix2pixHD生成对抗网络(GAN)。经过训练,GAN模型可以为新的和随机的建筑平面图生成保护覆盖率为99.5%的喷头布置。除了确保符合规范的设计外,GAN设计的喷头总数比专业工程师布置的少13%。采用这种智能方法,设计图纸的编制时间可节省76%,合理减少喷头的使用,提高喷头设计的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-powered automatic design of fire sprinkler layout for random building floorplans
Fire sprinkler system is a commonly designed safety provision in modern buildings, yet the current manual drawing preparation process is burdened by time-consuming tasks, heavy workloads, and human errors. This study introduces an intelligent framework aimed at automating the drawing preparation process for fire sprinkler layout. A database of 120 sprinkler design drawings was compiled to train a pix2pixHD generative adversarial network (GAN). After training, the GAN model can generate sprinkler placement with a protection coverage of 99.5% for new and random architectural floorplans. Apart from ensuring code-compliant design, the total number of sprinklers designed by GAN is 13% lower than those arranged by professional engineers. By adopting this intelligent method, the time needed for design drawing preparation can be saved by 76%, and the cost-benefit of the sprinkler design can be improved by using reasonable fewer sprinklers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信