具有标签概率置信区间的可靠规划弱监督。

IF 18.6
Veronica Alvarez, Santiago Mazuelas, Steven An, Sanjoy Dasgupta
{"title":"具有标签概率置信区间的可靠规划弱监督。","authors":"Veronica Alvarez, Santiago Mazuelas, Steven An, Sanjoy Dasgupta","doi":"10.1109/TPAMI.2025.3597508","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate labeling of datasets is often both costly and time-consuming. Given an unlabeled dataset, programmatic weak supervision obtains probabilistic predictions for the labels by leveraging multiple weak labeling functions (LFs) that provide rough guesses for labels. Weak LFs commonly provide guesses with assorted types and unknown interdependences that can result in unreliable predictions. Furthermore, existing techniques for programmatic weak supervision cannot provide assessments for the reliability of the probabilistic predictions for labels. This paper presents a methodology for programmatic weak supervision that can provide confidence intervals for label probabilities and obtain more reliable predictions. In particular, the methods proposed use uncertainty sets of distributions that encapsulate the information provided by LFs with unrestricted behavior and typology. Experiments on multiple benchmark datasets show the improvement of the presented methods over the state-of-the-art and the practicality of the confidence intervals presented.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable Programmatic Weak Supervision with Confidence Intervals for Label Probabilities.\",\"authors\":\"Veronica Alvarez, Santiago Mazuelas, Steven An, Sanjoy Dasgupta\",\"doi\":\"10.1109/TPAMI.2025.3597508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate labeling of datasets is often both costly and time-consuming. Given an unlabeled dataset, programmatic weak supervision obtains probabilistic predictions for the labels by leveraging multiple weak labeling functions (LFs) that provide rough guesses for labels. Weak LFs commonly provide guesses with assorted types and unknown interdependences that can result in unreliable predictions. Furthermore, existing techniques for programmatic weak supervision cannot provide assessments for the reliability of the probabilistic predictions for labels. This paper presents a methodology for programmatic weak supervision that can provide confidence intervals for label probabilities and obtain more reliable predictions. In particular, the methods proposed use uncertainty sets of distributions that encapsulate the information provided by LFs with unrestricted behavior and typology. Experiments on multiple benchmark datasets show the improvement of the presented methods over the state-of-the-art and the practicality of the confidence intervals presented.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2025.3597508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3597508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据集的准确标记通常既昂贵又耗时。给定一个未标记的数据集,编程弱监督通过利用多个提供标签粗略猜测的弱标记函数(LFs)获得标签的概率预测。弱LFs通常提供各种类型和未知相互依赖性的猜测,这可能导致不可靠的预测。此外,现有的程序性弱监督技术不能为标签的概率预测的可靠性提供评估。本文提出了一种可编程弱监督方法,该方法可以为标签概率提供置信区间,从而获得更可靠的预测。特别是,所提出的方法使用分布的不确定性集,这些分布集封装了具有不受限制的行为和类型的lf提供的信息。在多个基准数据集上的实验表明,所提出的方法比目前的方法有了改进,并且所提出的置信区间具有实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable Programmatic Weak Supervision with Confidence Intervals for Label Probabilities.

The accurate labeling of datasets is often both costly and time-consuming. Given an unlabeled dataset, programmatic weak supervision obtains probabilistic predictions for the labels by leveraging multiple weak labeling functions (LFs) that provide rough guesses for labels. Weak LFs commonly provide guesses with assorted types and unknown interdependences that can result in unreliable predictions. Furthermore, existing techniques for programmatic weak supervision cannot provide assessments for the reliability of the probabilistic predictions for labels. This paper presents a methodology for programmatic weak supervision that can provide confidence intervals for label probabilities and obtain more reliable predictions. In particular, the methods proposed use uncertainty sets of distributions that encapsulate the information provided by LFs with unrestricted behavior and typology. Experiments on multiple benchmark datasets show the improvement of the presented methods over the state-of-the-art and the practicality of the confidence intervals presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信