Veronica Alvarez, Santiago Mazuelas, Steven An, Sanjoy Dasgupta
{"title":"具有标签概率置信区间的可靠规划弱监督。","authors":"Veronica Alvarez, Santiago Mazuelas, Steven An, Sanjoy Dasgupta","doi":"10.1109/TPAMI.2025.3597508","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate labeling of datasets is often both costly and time-consuming. Given an unlabeled dataset, programmatic weak supervision obtains probabilistic predictions for the labels by leveraging multiple weak labeling functions (LFs) that provide rough guesses for labels. Weak LFs commonly provide guesses with assorted types and unknown interdependences that can result in unreliable predictions. Furthermore, existing techniques for programmatic weak supervision cannot provide assessments for the reliability of the probabilistic predictions for labels. This paper presents a methodology for programmatic weak supervision that can provide confidence intervals for label probabilities and obtain more reliable predictions. In particular, the methods proposed use uncertainty sets of distributions that encapsulate the information provided by LFs with unrestricted behavior and typology. Experiments on multiple benchmark datasets show the improvement of the presented methods over the state-of-the-art and the practicality of the confidence intervals presented.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable Programmatic Weak Supervision with Confidence Intervals for Label Probabilities.\",\"authors\":\"Veronica Alvarez, Santiago Mazuelas, Steven An, Sanjoy Dasgupta\",\"doi\":\"10.1109/TPAMI.2025.3597508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate labeling of datasets is often both costly and time-consuming. Given an unlabeled dataset, programmatic weak supervision obtains probabilistic predictions for the labels by leveraging multiple weak labeling functions (LFs) that provide rough guesses for labels. Weak LFs commonly provide guesses with assorted types and unknown interdependences that can result in unreliable predictions. Furthermore, existing techniques for programmatic weak supervision cannot provide assessments for the reliability of the probabilistic predictions for labels. This paper presents a methodology for programmatic weak supervision that can provide confidence intervals for label probabilities and obtain more reliable predictions. In particular, the methods proposed use uncertainty sets of distributions that encapsulate the information provided by LFs with unrestricted behavior and typology. Experiments on multiple benchmark datasets show the improvement of the presented methods over the state-of-the-art and the practicality of the confidence intervals presented.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2025.3597508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3597508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliable Programmatic Weak Supervision with Confidence Intervals for Label Probabilities.
The accurate labeling of datasets is often both costly and time-consuming. Given an unlabeled dataset, programmatic weak supervision obtains probabilistic predictions for the labels by leveraging multiple weak labeling functions (LFs) that provide rough guesses for labels. Weak LFs commonly provide guesses with assorted types and unknown interdependences that can result in unreliable predictions. Furthermore, existing techniques for programmatic weak supervision cannot provide assessments for the reliability of the probabilistic predictions for labels. This paper presents a methodology for programmatic weak supervision that can provide confidence intervals for label probabilities and obtain more reliable predictions. In particular, the methods proposed use uncertainty sets of distributions that encapsulate the information provided by LFs with unrestricted behavior and typology. Experiments on multiple benchmark datasets show the improvement of the presented methods over the state-of-the-art and the practicality of the confidence intervals presented.