Conny K Baldauf, Corinna Fahldieck, Alexa Angenstein, Sönke Weinert, Mariam Hakobyan, Daniel B Lipka, Tobias R Haage, Vikas Bhuria, Martin Böttcher, Dimitrios Mougiakakos, Burkhart Schraven, Thomas Fischer
{"title":"整合素信号的激活上调JAK2-V617F阳性造血细胞的促炎细胞因子。","authors":"Conny K Baldauf, Corinna Fahldieck, Alexa Angenstein, Sönke Weinert, Mariam Hakobyan, Daniel B Lipka, Tobias R Haage, Vikas Bhuria, Martin Böttcher, Dimitrios Mougiakakos, Burkhart Schraven, Thomas Fischer","doi":"10.1186/s12964-025-02358-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The JAK2-V617F mutation is the most frequent driver mutation in a group of malignant hematopoietic disorders called myeloproliferative neoplasms (MPN). JAK2-V617F is a somatic mutation originating in a hematopoietic stem cell and results in constitutively activated JAK-STAT signaling. High levels of pro-inflammatory cytokines in the blood are a hallmark of MPN patients and are a key factor in the severe clinical symptoms seen in these patients. The molecular mechanisms underlying the up-regulation of inflammatory cytokines in JAK2-V617F mutated hematopoietic cells remain to be elucidated.</p><p><strong>Methods: </strong>32D myeloid progenitor cells expressing JAK2-wildtype (WT) and JAK2-V617F, respectively were employed. In addition, primary hematopoietic cells from the JAK2-V617F knock-in MPN mouse model were investigated. Integrin outside-in signaling upon binding of cells to the adhesion molecules VCAM-1/ICAM-1 was characterized by Western blotting of phosphorylated FAK, STAT3, p65, SYK and JNK. Regulation of mRNA and protein expression of IL-1α, IL-1β, IL-6, TNF and CXCL10 was measured by qPCR and ELISA. RNAseq and DNA methylation analysis in primary mouse JAK2-V617F granulocytes was performed. In JAK2-V617F knock-in mice, anti-integrin treatment was applied to evaluate the impact of activated integrin signaling on IL-1 blood levels in vivo.</p><p><strong>Results: </strong>Integrin stimulation via the adhesion molecules VCAM-1/ICAM-1 activated integrin outside-in signaling including FAK, SYK, NFκB, and JNK. This induced strong mRNA expression of IL-1α, IL-1β, IL-6, TNF and CXCL10. In 32D cells, the presence of the JAK2-V617F mutation further increased VCAM-1/ICAM-1-induced mRNA and protein levels of IL-1α and IL-1β, and active caspase 1 expression. In primary granulocytes, integrin stimulation resulted in an activated mRNA signature of inflammatory cytokines. Consistent with the mRNA results, adhesion to VCAM-1/ICAM-1 induced an increase in intracellular IL-1α and IL-1β protein levels in 32D cells. However, in primary hematopoietic cells, up-regulation of inflammatory cytokines was not observed at the protein level in vitro, whereas, in vivo, blocking of integrin binding to VCAM-1/ICAM-1 was sufficient to reduce elevated IL-1α levels in the blood of JAK2-V617F mice.</p><p><strong>Conclusions: </strong>We conclude that integrin stimulation via the adhesion molecules VCAM-1/ICAM-1 activates integrin outside-in signaling, leading to the up-regulation of pro-inflammatory cytokines in both JAK2-mutated and non-mutated mouse hematopoietic cells.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"368"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337553/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activation of integrin signaling up-regulates pro-inflammatory cytokines in JAK2-V617F positive hematopoietic cells.\",\"authors\":\"Conny K Baldauf, Corinna Fahldieck, Alexa Angenstein, Sönke Weinert, Mariam Hakobyan, Daniel B Lipka, Tobias R Haage, Vikas Bhuria, Martin Böttcher, Dimitrios Mougiakakos, Burkhart Schraven, Thomas Fischer\",\"doi\":\"10.1186/s12964-025-02358-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The JAK2-V617F mutation is the most frequent driver mutation in a group of malignant hematopoietic disorders called myeloproliferative neoplasms (MPN). JAK2-V617F is a somatic mutation originating in a hematopoietic stem cell and results in constitutively activated JAK-STAT signaling. High levels of pro-inflammatory cytokines in the blood are a hallmark of MPN patients and are a key factor in the severe clinical symptoms seen in these patients. The molecular mechanisms underlying the up-regulation of inflammatory cytokines in JAK2-V617F mutated hematopoietic cells remain to be elucidated.</p><p><strong>Methods: </strong>32D myeloid progenitor cells expressing JAK2-wildtype (WT) and JAK2-V617F, respectively were employed. In addition, primary hematopoietic cells from the JAK2-V617F knock-in MPN mouse model were investigated. Integrin outside-in signaling upon binding of cells to the adhesion molecules VCAM-1/ICAM-1 was characterized by Western blotting of phosphorylated FAK, STAT3, p65, SYK and JNK. Regulation of mRNA and protein expression of IL-1α, IL-1β, IL-6, TNF and CXCL10 was measured by qPCR and ELISA. RNAseq and DNA methylation analysis in primary mouse JAK2-V617F granulocytes was performed. In JAK2-V617F knock-in mice, anti-integrin treatment was applied to evaluate the impact of activated integrin signaling on IL-1 blood levels in vivo.</p><p><strong>Results: </strong>Integrin stimulation via the adhesion molecules VCAM-1/ICAM-1 activated integrin outside-in signaling including FAK, SYK, NFκB, and JNK. This induced strong mRNA expression of IL-1α, IL-1β, IL-6, TNF and CXCL10. In 32D cells, the presence of the JAK2-V617F mutation further increased VCAM-1/ICAM-1-induced mRNA and protein levels of IL-1α and IL-1β, and active caspase 1 expression. In primary granulocytes, integrin stimulation resulted in an activated mRNA signature of inflammatory cytokines. Consistent with the mRNA results, adhesion to VCAM-1/ICAM-1 induced an increase in intracellular IL-1α and IL-1β protein levels in 32D cells. However, in primary hematopoietic cells, up-regulation of inflammatory cytokines was not observed at the protein level in vitro, whereas, in vivo, blocking of integrin binding to VCAM-1/ICAM-1 was sufficient to reduce elevated IL-1α levels in the blood of JAK2-V617F mice.</p><p><strong>Conclusions: </strong>We conclude that integrin stimulation via the adhesion molecules VCAM-1/ICAM-1 activates integrin outside-in signaling, leading to the up-regulation of pro-inflammatory cytokines in both JAK2-mutated and non-mutated mouse hematopoietic cells.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"368\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337553/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02358-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02358-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Activation of integrin signaling up-regulates pro-inflammatory cytokines in JAK2-V617F positive hematopoietic cells.
Background: The JAK2-V617F mutation is the most frequent driver mutation in a group of malignant hematopoietic disorders called myeloproliferative neoplasms (MPN). JAK2-V617F is a somatic mutation originating in a hematopoietic stem cell and results in constitutively activated JAK-STAT signaling. High levels of pro-inflammatory cytokines in the blood are a hallmark of MPN patients and are a key factor in the severe clinical symptoms seen in these patients. The molecular mechanisms underlying the up-regulation of inflammatory cytokines in JAK2-V617F mutated hematopoietic cells remain to be elucidated.
Methods: 32D myeloid progenitor cells expressing JAK2-wildtype (WT) and JAK2-V617F, respectively were employed. In addition, primary hematopoietic cells from the JAK2-V617F knock-in MPN mouse model were investigated. Integrin outside-in signaling upon binding of cells to the adhesion molecules VCAM-1/ICAM-1 was characterized by Western blotting of phosphorylated FAK, STAT3, p65, SYK and JNK. Regulation of mRNA and protein expression of IL-1α, IL-1β, IL-6, TNF and CXCL10 was measured by qPCR and ELISA. RNAseq and DNA methylation analysis in primary mouse JAK2-V617F granulocytes was performed. In JAK2-V617F knock-in mice, anti-integrin treatment was applied to evaluate the impact of activated integrin signaling on IL-1 blood levels in vivo.
Results: Integrin stimulation via the adhesion molecules VCAM-1/ICAM-1 activated integrin outside-in signaling including FAK, SYK, NFκB, and JNK. This induced strong mRNA expression of IL-1α, IL-1β, IL-6, TNF and CXCL10. In 32D cells, the presence of the JAK2-V617F mutation further increased VCAM-1/ICAM-1-induced mRNA and protein levels of IL-1α and IL-1β, and active caspase 1 expression. In primary granulocytes, integrin stimulation resulted in an activated mRNA signature of inflammatory cytokines. Consistent with the mRNA results, adhesion to VCAM-1/ICAM-1 induced an increase in intracellular IL-1α and IL-1β protein levels in 32D cells. However, in primary hematopoietic cells, up-regulation of inflammatory cytokines was not observed at the protein level in vitro, whereas, in vivo, blocking of integrin binding to VCAM-1/ICAM-1 was sufficient to reduce elevated IL-1α levels in the blood of JAK2-V617F mice.
Conclusions: We conclude that integrin stimulation via the adhesion molecules VCAM-1/ICAM-1 activates integrin outside-in signaling, leading to the up-regulation of pro-inflammatory cytokines in both JAK2-mutated and non-mutated mouse hematopoietic cells.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.