在暴露-反应分析中使用泊松与逻辑回归的观点:见解和考虑。

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Yiming Cheng, Ping Chen, Yan Li
{"title":"在暴露-反应分析中使用泊松与逻辑回归的观点:见解和考虑。","authors":"Yiming Cheng, Ping Chen, Yan Li","doi":"10.1002/psp4.70100","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective evaluates the use of Poisson versus logistic regression in modeling binary exposure-response (ER) data. Through simulation studies across varying sample sizes, event rates, and ER slopes, we highlight the strengths and limitations of each method. Our findings show that Poisson regression is suitable under low event rates, while logistic regression provides consistent performance across broader scenarios. These insights help guide model selection and improve the robustness of ER analyses in drug development.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Perspective on the Use of Poisson Versus Logistic Regression in Exposure-Response Analysis: Insights and Considerations.\",\"authors\":\"Yiming Cheng, Ping Chen, Yan Li\",\"doi\":\"10.1002/psp4.70100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This perspective evaluates the use of Poisson versus logistic regression in modeling binary exposure-response (ER) data. Through simulation studies across varying sample sizes, event rates, and ER slopes, we highlight the strengths and limitations of each method. Our findings show that Poisson regression is suitable under low event rates, while logistic regression provides consistent performance across broader scenarios. These insights help guide model selection and improve the robustness of ER analyses in drug development.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/psp4.70100\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70100","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

这一观点评估了泊松与逻辑回归在二元暴露-反应(ER)数据建模中的应用。通过对不同样本量、事件率和ER斜率的模拟研究,我们强调了每种方法的优势和局限性。我们的研究结果表明,泊松回归适用于低事件率,而逻辑回归在更广泛的情况下提供一致的性能。这些见解有助于指导模型选择并提高药物开发中ER分析的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Perspective on the Use of Poisson Versus Logistic Regression in Exposure-Response Analysis: Insights and Considerations.

This perspective evaluates the use of Poisson versus logistic regression in modeling binary exposure-response (ER) data. Through simulation studies across varying sample sizes, event rates, and ER slopes, we highlight the strengths and limitations of each method. Our findings show that Poisson regression is suitable under low event rates, while logistic regression provides consistent performance across broader scenarios. These insights help guide model selection and improve the robustness of ER analyses in drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信