{"title":"利用分子对接和模拟研究探索Cus17凝集素与聚糖的结构空间。","authors":"Vikas Tiwari, Aditi Pathak, Tejaswini Poojary, Ramanathan Sowdhamini, Avadhesha Surolia","doi":"10.1016/j.csbj.2025.07.028","DOIUrl":null,"url":null,"abstract":"<p><p>The Cus17 phloem protein, in the case of <i>Cucumis sativus</i> species, plays an important role in the phloem-based defense of the plant. Cus17 can bind to various carbohydrates present on insect exoskeletons or fungal cells. The recent experimental structure of chitotriose bound Cus17 elucidates the carbohydrate interacting residues of Cus17. Higher chito-oligosaccharides are also known to interact with Cus17, but the lack of experimental structure impedes our understanding of their interaction. In this study, we have employed <i>in-silico</i> methods to explore the binding interactions of higher chito-oligosaccharides with Cus17. Chitoheptaose forms stable interactions with canonical binding site residues Trp48 and Asp50. Smaller chito-oligosaccharides were observed to be relatively unstable at the canonical binding site of Cus17. Further, the chito-oligosaccharides were inspected for interactions with predicted ligand binding sites. We also generated different tetramers of Cus17 and docked the chito-oligosaccharides to the tetrameric Cus17. All chito-oligosaccharides were found to make persistent interactions with Cus17 tetramer. Interestingly, chitotriose shows the best binding affinity and maintains stable interactions with Cus17 tetramer upon extended simulations with the canonical site.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3319-3327"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploration of structural space of Cus17 lectin with glycans using molecular docking and simulation studies.\",\"authors\":\"Vikas Tiwari, Aditi Pathak, Tejaswini Poojary, Ramanathan Sowdhamini, Avadhesha Surolia\",\"doi\":\"10.1016/j.csbj.2025.07.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Cus17 phloem protein, in the case of <i>Cucumis sativus</i> species, plays an important role in the phloem-based defense of the plant. Cus17 can bind to various carbohydrates present on insect exoskeletons or fungal cells. The recent experimental structure of chitotriose bound Cus17 elucidates the carbohydrate interacting residues of Cus17. Higher chito-oligosaccharides are also known to interact with Cus17, but the lack of experimental structure impedes our understanding of their interaction. In this study, we have employed <i>in-silico</i> methods to explore the binding interactions of higher chito-oligosaccharides with Cus17. Chitoheptaose forms stable interactions with canonical binding site residues Trp48 and Asp50. Smaller chito-oligosaccharides were observed to be relatively unstable at the canonical binding site of Cus17. Further, the chito-oligosaccharides were inspected for interactions with predicted ligand binding sites. We also generated different tetramers of Cus17 and docked the chito-oligosaccharides to the tetrameric Cus17. All chito-oligosaccharides were found to make persistent interactions with Cus17 tetramer. Interestingly, chitotriose shows the best binding affinity and maintains stable interactions with Cus17 tetramer upon extended simulations with the canonical site.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3319-3327\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.07.028\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploration of structural space of Cus17 lectin with glycans using molecular docking and simulation studies.
The Cus17 phloem protein, in the case of Cucumis sativus species, plays an important role in the phloem-based defense of the plant. Cus17 can bind to various carbohydrates present on insect exoskeletons or fungal cells. The recent experimental structure of chitotriose bound Cus17 elucidates the carbohydrate interacting residues of Cus17. Higher chito-oligosaccharides are also known to interact with Cus17, but the lack of experimental structure impedes our understanding of their interaction. In this study, we have employed in-silico methods to explore the binding interactions of higher chito-oligosaccharides with Cus17. Chitoheptaose forms stable interactions with canonical binding site residues Trp48 and Asp50. Smaller chito-oligosaccharides were observed to be relatively unstable at the canonical binding site of Cus17. Further, the chito-oligosaccharides were inspected for interactions with predicted ligand binding sites. We also generated different tetramers of Cus17 and docked the chito-oligosaccharides to the tetrameric Cus17. All chito-oligosaccharides were found to make persistent interactions with Cus17 tetramer. Interestingly, chitotriose shows the best binding affinity and maintains stable interactions with Cus17 tetramer upon extended simulations with the canonical site.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology