{"title":"hif介导的果糖代谢和心血管-肾-代谢综合征的疾病进展。","authors":"David Mathew, Sean Davidson, Derek Yellon","doi":"10.1002/cph4.70033","DOIUrl":null,"url":null,"abstract":"<p><p>The 'Cardiovascular-Kidney-Metabolic Syndrome' which is characterized by multi-organ dysfunction ultimately resulting in adverse cardiac outcomes, serves to highlight the importance of organ crosstalk in pathophysiology. The cellular metabolism of fructose, regulated by Ketohexokinase-C with associated inflammatory sequelae, is mechanistically linked with each component of this clinical entity. Fructose metabolism is confined to the Kidney, Liver, and Small Intestine under normal physiological conditions; however, in the context of ischaemia, HIF-1α induces cardiac expression of Ketohexokinase-C with consequent organ hypertrophy and dysfunction. This adverse effect of cardiac HIF-1α accumulation raises concerns over the potential pleiotropic effects of the 'HIF stabilizing' inhibitors of Prolyl Hydroxylase currently entering clinical practice for the treatment of anemia in Chronic Kidney Disease, particularly given the increased cardiovascular mortality observed in this patient group. We suggest that pleiotropic effects of 'HIF stabilization' on cardiac physiology warrant investigation and, furthermore, that pharmacological inhibition of Ketohexokinase-C, and therefore fructose metabolism, represents an opportunity to improve cardiac outcomes in the Cardiovascular-Kidney-Metabolic Syndrome.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"15 4","pages":"e70033"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339425/pdf/","citationCount":"0","resultStr":"{\"title\":\"HIF-Mediated Fructose Metabolism and Disease Progression in the Cardiovascular-Kidney-Metabolic Syndrome.\",\"authors\":\"David Mathew, Sean Davidson, Derek Yellon\",\"doi\":\"10.1002/cph4.70033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 'Cardiovascular-Kidney-Metabolic Syndrome' which is characterized by multi-organ dysfunction ultimately resulting in adverse cardiac outcomes, serves to highlight the importance of organ crosstalk in pathophysiology. The cellular metabolism of fructose, regulated by Ketohexokinase-C with associated inflammatory sequelae, is mechanistically linked with each component of this clinical entity. Fructose metabolism is confined to the Kidney, Liver, and Small Intestine under normal physiological conditions; however, in the context of ischaemia, HIF-1α induces cardiac expression of Ketohexokinase-C with consequent organ hypertrophy and dysfunction. This adverse effect of cardiac HIF-1α accumulation raises concerns over the potential pleiotropic effects of the 'HIF stabilizing' inhibitors of Prolyl Hydroxylase currently entering clinical practice for the treatment of anemia in Chronic Kidney Disease, particularly given the increased cardiovascular mortality observed in this patient group. We suggest that pleiotropic effects of 'HIF stabilization' on cardiac physiology warrant investigation and, furthermore, that pharmacological inhibition of Ketohexokinase-C, and therefore fructose metabolism, represents an opportunity to improve cardiac outcomes in the Cardiovascular-Kidney-Metabolic Syndrome.</p>\",\"PeriodicalId\":10573,\"journal\":{\"name\":\"Comprehensive Physiology\",\"volume\":\"15 4\",\"pages\":\"e70033\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339425/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cph4.70033\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cph4.70033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
HIF-Mediated Fructose Metabolism and Disease Progression in the Cardiovascular-Kidney-Metabolic Syndrome.
The 'Cardiovascular-Kidney-Metabolic Syndrome' which is characterized by multi-organ dysfunction ultimately resulting in adverse cardiac outcomes, serves to highlight the importance of organ crosstalk in pathophysiology. The cellular metabolism of fructose, regulated by Ketohexokinase-C with associated inflammatory sequelae, is mechanistically linked with each component of this clinical entity. Fructose metabolism is confined to the Kidney, Liver, and Small Intestine under normal physiological conditions; however, in the context of ischaemia, HIF-1α induces cardiac expression of Ketohexokinase-C with consequent organ hypertrophy and dysfunction. This adverse effect of cardiac HIF-1α accumulation raises concerns over the potential pleiotropic effects of the 'HIF stabilizing' inhibitors of Prolyl Hydroxylase currently entering clinical practice for the treatment of anemia in Chronic Kidney Disease, particularly given the increased cardiovascular mortality observed in this patient group. We suggest that pleiotropic effects of 'HIF stabilization' on cardiac physiology warrant investigation and, furthermore, that pharmacological inhibition of Ketohexokinase-C, and therefore fructose metabolism, represents an opportunity to improve cardiac outcomes in the Cardiovascular-Kidney-Metabolic Syndrome.
期刊介绍:
Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered.
This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.